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Abstract
We propose an effective regularization model based

on second–order total generalized variation for image
restoration with mixed Poisson–Gaussian noise. An effi-
cient alternating minimization algorithm is employed to
solve the considered model. Finally, provided numerical
results show that our proposed model can preserve more
details and get higher image visual quality than recent
state-of-the-art methods.

Key words
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1 Introduction
Image denoising is an important problem in digital

image processing. In practical, the Poisson-Gaussian
model can accurately describe the noise present in a
number of imaging applications such as astronomy,
medicine, biology, etc...[Chouzenoux and et al., 2015;
Benvenuto and et al., 2008; Granichin, Erofeeva, and
Senin, 2018; Erofeeva, Galyamina, Granichin, et al.,
2019]. As is well known, there exists many methods
of image denoising of images under Poisson-Gaussian
noise, for instance, PURELET [Li, Luisier and Blu,
2018], variance stabilization transforms [Bohra and et
al., 2019], unbiased risk estimator [10], contourlet trans-
form and hidden Markov models [Yang and Lee], Total
variation (TV) based methods [Li and et al., 2015].

∗Corresponding author
Methods based on TV regularization are is probably

the most popular for mixed Poisson-Gaussian noise re-
moval (TVPG) [Calatroni, Reyes and Schronlieb, 2017;
Pham C. Thang,Tran T.T.Thao and et al., 2018b]. More
specifically, the TV-based mixed Poisson-Gaussian noise
removal model can be expressed as follows (TV model):

X∗ = argmin
X

(∫
Ω

|∇X| dx (1)

+
λ

2

∫
Ω

(X − Y)2dx+ β

∫
Ω

(X − Y logX)dx,

)
where Y is the observed image; Ω ⊂ R2 be bounded
open set and X must be positive almost everywhere over
Ω; λ, β are positive regularization parameters.

For solving the aforementioned optimization problem,
many effective numerical techniques can be used, for
instance, primal-dual algorithm [Chambolle, 2004], an
augmented Lagrangian method [He and et al., 2014;
Huang, Ng, and Wen, 2008; Wang and et al., 2008], the
split Bregman method [Goldstein and Osher, 2009; Chen
and et al., 2015], etc.

As is well known, the TV regularization framework (1)
allows the suppression of noise well with sharp edges.
Unfortunately, it often leads to the undesired staircase
artifacts in the reconstruction, since it tends to transform
the smooth regions of the result into piecewise constant
regions during iterative process. Many modified TV reg-
ularization were proposed to overcome the issue, such as
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total generalized variation [Bredies, Kunisch and Pock,
2010; Bredies, Dong and Hintermller, 2013], non-local
total variation [Kayyar and Jidesh, 2018], TV combined
with higher-order term [Yang and Zhao, 2019], Euler’s
elastic model [Zhang and et al., 2017a], mean curvature
model [Zhu, Tai, and Chan, 2014; Myllykoski and et
al., 2015], fractional order TV [Dong and Chen, 2016;
Chowdhury and et al., 2020], overlapping TV [Shi, Han
and Liu, 2016; Ding and et al. 2019] and so on.

In this paper, we focus on the total generalized vari-
ation (TGV) regularizationed based image restoration
under mixed Poisson-Gaussian noise. Replacing the
TV regularization by TGV, the mathematical model for
mixed Poisson-Gaussian noise removal can be expressed
as follows [Pham et al., 2021](TGV model):

X∗ = argmin
X

(
TGV 2

α (X) (2)

+
λ

2

∫
Ω

(Ku− f)2dx+ β

∫
Ω

(Ku− f logKu)dx,

)
where the first term TGV 2

α is the second-order TGV reg-
ularization, and the scalar α = (α1, α2) is the positive
parameter.

The TGV model (2) can perform approximation
of image regions with arbitrary order differentiation
such as piecewise constant, piecewise affine, piecewise
quadratic and so on. Therefore, TGV-based model is
better than the TV model in suppressing the staircasing
effect with superior performance. However, the TGV
regularizer can blur the contours and edges of an image
while removing noise, and sometimes even lost some
principal details. To improve the edge-preserving abil-
ity of TGV, nonconvex TGV (NCTGV) was designed
for further avoiding preserving sharp discontinuities and
clear contours of the image while alleviating the stair-
case effect [Ochs and et al., 2015; Zhang and et al.,
2017b; Liu, 2021].

In this work, we investigates the non–convex total
generalized variation regularization model to remove
mixed Poisson-Gaussian noise, which cleverly combines
the advantage of TGV regularization with nonconvex
penalty (NCTGV):

X∗ = argmin
X

(
NCTGV 2

α (u) (3)

+
λ

2

∫
Ω

(X − Y)2dx+ β

∫
Ω

(X − Y logX)dx,

)
where NCTGV 2

α denotes the non-convex form of
TGV 2

α , and its define will be given in the next section.
Our main contributions in this paper are following. We

introduce a new total variation model for restoring im-
age with mixed Poisson-Gaussian on the basis of the
non–convex penalty with the TGV regularizer. The sec-
ond important contribution is the proposal of an effi-

cient alternating direction method of multipliers for tack-
ling the resulting variational model. Finally, in com-
parison with several existing models, experimental re-
sults demonstrates the competitive performance of our
method for image reconstruction, with respect to restora-
tion accuracy and visual quality.

The rest of this paper is organized as follows. In Sec-
tion (2), we briefly describe the proposed model for
image denoising method with mixed Poisson-Gaussian
noise (subsection (2.1)) and establish the proposed algo-
rithm for solving the optimization problem in subsection
(2.2). Numerical experiments to illustrate the outstand-
ing performance of our approach are provided in Section
(3). Finally, we make conclusions of this work in Section
(4).

2 Proposed method
2.1 The denoising model

In this section, we first briefly reviews the fundamen-
tal concepts which are relevant to our variational model
(see [Bredies, Kunisch and Pock, 2010; Knoll and et al.,
2011; Guo, Qin and Yin, 2014; Liu, 2019] for more de-
tails)

Let Ω ⊂ Rd be a bound domain, k > 1 and α =
(α0, α1) > 0. Then the total generalized variation of
second-order with weight α for u ∈ L1(Ω) is defined as
the value of the functional:

TGV 2
α (X) = sup{

∫
Ω

X div2ϑdx|ϑ ∈ C2
c (Ω,Sd×d),

∥ϑ∥∞ ≤ α0, ∥divϑ∥∞ ≤ α1}

where d denotes the dimension of images, C2
c (Ω,Sd×d)

is the space of compactly supported symmetric d× d
matrix fields, Sd×d is the set of all symmetric d× d ma-
trices,
(divϑ)i = Σd

j=1
∂ϑij

∂xj
, (div2ϑ)i = Σd

i=1,j=1
∂2ϑij

∂xi∂xj
. The

infinite norms of ϑ and divϑ are given by

∥ϑ∥∞ = sup
x∈Ω

(
Σd

i=1,j=1|ϑij |2
) 1

2

∥divϑ∥∞ = sup
x∈Ω

(
Σd

j=1|(divϑ)j(x)|2
) 1

2

The space of functions of Bounded Generalized Varia-
tion is defined as follows:

BGV 2(Ω) = {X ∈ L1(Ω)|TGV 2
α (X) < ∞},

∥X∥BGV 2 = ∥X∥1 + TGV 2
α (X).

BGV 2(Ω) is a Banach space independent of the weight
vector α, TGV 2

α is a seminorm and a convex function
in BGV 2(Ω). Subsequently, we denote the spaces U =
C2
c (Ω,R), V = C2

c (Ω,R2), and G = C2
c (Ω, S

2×2).
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According to [Bredies, Kunisch and Pock, 2010; Knoll
and et al., 2011; Guo, Qin and Yin, 2014; Liu, 2019], the
discrete TGV 2

α regularization of u can be formulated as:

TGV 2
α (X) = min

W
α1∥∇X − W∥1 + α2∥E(W)∥1 (4)

where W = (W1,W2)
T E(W) = (1/2)(∇W +∇WT )

,

∇X =

[
∇1X
∇2X

]
(5)

E(W) =

[
∇1W1

1
2 (∇2W1 +∇1W2)

1
2 (∇2W1 +∇1W2) ∇2W2)

]
(6)

where ∇ = (∇1;∇2), ∇1 and ∇2 are derivative op-
erators in the horizontal and vertical directions, respec-
tively.

Furthermore, by using the non-convex constraints on
TGV (4), the non-convex regularization is written as

NCTGV 2
α = min

W

(
α1H(∇X − W) + α2H(E(W))

)
,

(7)

where H is non–convex potential function.

2.2 Computational method
In this paper, we introduces a non–convex potential

function H(q) = log(1 + ϵ|q|), ϵ > 0, based on the
NCTGV regularizer (7), and proposes a novel NCTGV
regularized model for mixed Poisson-Gaussian noise re-
moval (3) as follows (NCTGV model):

min
z,w

(
α1 log(1 + β|∇X − W|) (8)

+ α2 log(1 + β|E(W)|)

+
λ

2
(X − Y)22 + β⟨1,X − Y logX⟩

)
,

In this section, we derive the numerical method for
problem (8) in detail. Computationally, we construct
the following convex approximation by using the it-
eratively reweighted l1 algorithm [Candes, Wakin and
Boyd, 2008] as the following surrogate convex optimiza-
tion problem:

min
z,w

(
α1γ

(k)
1 (∥∇X − W∥1) + α2γ

(k)
2 (∥E(W)∥1) (9)

+
λ

2
(X − Y)2 + β⟨1,X − Y logX⟩

)
,

where γ
(k)
1 and γ

(k)
2 are two weights calculated in the

k − th iteration as follows:

γ
(k)
1 =

β

1 + β|∇u(k)|
and γ

(k)
2 =

β

1 + β|E(w(k))|

By the classical augmented Lagrangian multiplier
method [Huang, Ng, and Wen, 2008; He and et al., 2014;
Goldstein and Osher, 2009; Chen and et al., 2015], we
introduce three new variables (D,G,Z) and rewrite 9 in
the constrained optimization problem as follows:

min
U,D,G,Z

(
α1γ

(t)
1 ∥D∥1 + α2γ

(t)
2 ∥G∥1 (10)

+
λ

2
∥Z − Y∥22 + β⟨1,Z − Y logZ⟩

)
s.t. D = ∇X − W,G = E(X),Z = X,

D =

[
d1
d2

]
∈ V and G =

[
g1 g3
g3 g2

]
The augmented Lagrangian functional for the con-

strained optimization problem (10) is defined as:

L(X,W,D,G,Z, ρ1, ρ2, ρ3) =
(
α1γ

(k)
1 ∥D∥1 (11)

+ α2γ
(k)
1 ∥G∥1 +

λ

2
(Z − Y)2 + β⟨1,Z − Y logZ⟩

− ⟨θ,D −∇X + W⟩+ η1
2
∥D −∇X + W∥22

− ⟨ξ,G − E(W)⟩+ η2
2
∥G − E(W)∥22

− ⟨µ,Z − X⟩+ η3
2
∥Z − X∥22

)
,

where η1, η2, η3 - positive parameters; θ, ξ, µ - with La-
grangian multipliers,

|∇Xi,j | =
√
(∇1Xi,j)2 + (∇2Xi,j)2

, ∇1Xi,j = Xi+1,j − Xi,j , ∇2Xi,j = Xi,j+1 − Xi,j ,
(i = 1..M ; j = 1..N).

The minimization method to solve the problem (11)
can be expressed as follows:

X(k+1) = argminu

(
− ⟨θ(k),D(k) −∇X + W(k)⟩

+ η1
2
∥D(k) −∇X + W(k)∥22 − ⟨µ(k),Z(k) − X⟩

+ η3
2
∥Z(k) − X∥22

)
,

W(k+1) = argminW

(
− ⟨θ,D(k) −∇X(k+1) + W⟩

+ η1
2
∥D(k) −∇X(k+1) + W∥22

−⟨ξ,G(k) − E(W)⟩+ η2
2
∥G − E(W)∥22

)
,

D(k+1) = argminD

(
α1γ

(k)
1 ∥D∥1 − ⟨θ,D −∇X(k+1) + W(k+1)⟩

+ η1
2
∥D −∇X(k+1) + W(k+1)∥22

)
,

G(k+1) = argminG

(
α2γ

(k)
2 ∥G∥1 − ⟨ξ(k),G − E(W(k+1))⟩

+ η2
2
∥G − E(W(k+1))∥22

)
,

Z(k+1) = argminZ

(
λ
2
(z − Y)2 + β⟨1,Z − Y logZ⟩

−⟨µ(k),Z − X(k+1)⟩+ η3
2
∥Z − X(k+1)∥22

)
.

(12)
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with update for ρ(k+1)
1 , ρ

(k+1)
2 , ρ

(k+1)
3 :

θ(k+1) = θ(k) + η1(∇X(k+1) − D(k+1) − W(k+1)),

ξ(k+1) = ξ(k) + η2(E(W(k+1))− G(k+1)),

µ(k+1) = µ(k) + η3(X(k+1) − Z(k+1)).
(13)

– For the X subproblem: given in (12) as follows:

X(k+1) = argmin
X

(
− ⟨θ(k),D(k) −∇X + W(k)⟩

+
η1
2
∥D(k) −∇X + W(k)∥22−

− ⟨µ(k),Z(k) − X⟩+ η3
2
∥Z(k) − X∥22

)
= argmin

X

(
η1
2
∥D(k) −∇X + W(k) − θ(k)

η1
∥22

+
η3
2
∥Z(k) − X − µ(k)

η3
∥22
)

Thus, we get:

η1∇T (∇X +
θ(k)

η1
− D(k) − W(k))

+ η3(X +
µ(k)

η3
− Z(k)) = 0.

We can rewrite the equation as follows:(
η1∇T∇+ η3

)
X(k+1)

= η1∇T (D(k) + W(k) − θ(k)

η1
) + η3(Z(k) − µ(k)

η3
).

(14)

It is obvious that system (14) is linear and symmet-
ric positive definite, therefore X(k+1) can be efficiently
solved by fast Fourier transform (FFT) [Wang and et al.,
2008], under the periodic boundary conditions:

X(k+1) = F−1

( F
(

S(k)

)
η1F

(
∇T∇

)
+ η3

)
, (15)

where F and F−1 are the forward and inverse Fourier
transform operators, and

S(k) = η1∇T (D(k) + W(k) − θ(k)

η1
) + η3(Z(k) − µ(k)

η3
).

– For the W problem:

W(k+1) = argmin
W

(
− ⟨θ(k),D(k) −∇X(k+1) + W⟩

+
η1
2
∥D(k) −∇X(k+1) + W∥22 − ⟨ξ(k),G(k) − E(W)⟩

+
η2
2
∥G − E(W)∥22

= argmin
W

(
η1
2
∥W + D(k) −∇Z(k+1) − θ(k)

η1
∥22

+
η2
2
∥E(W)− G(k) +

ξ(k)

η2
∥22
)
.

Therefore we get:



(
η1(D

(k)
1 −∇1Z(k+1) + W1 − θ

(k)
1

η1
) + η2∇T

1 (∇1W1 − G1 +
ξ
(k)
1

η2
)

+η2∇T
2 (

1
2 (∇2W1 +∇1W2)− G3 +

ξ
(k)
3

η2
)

)
= 0(

η1(D
(k)
2 −∇2X(k+1) + w2 − θ

(k)
2

η1
)

+η2∇T
1 (

1
2 (∇2W1 +∇1W2)− G3 − ξ

(k)
3

η2
)

+η2∇T
2 (∇2W2 − G2 +

ξ
(k)
2

η2
)

)
= 0

(16)
From the system (16), we have

(
η1I + η2∇T

1 ∇1 +
η2
2
∇T

2 ∇2

)
W1 +

η2
2
∇T

2 ∇1W2

= η1

(
∇1X(k+1) − D(k)

1 +
θ
(k)
1
η1

)
+η2∇T

1

(
G1 − ξ

(k)
1
η1

)
+ η2∇T

2

(
g3 − ξ

(k)
3
η1

)
η2
2
∇T

1 ∇2W1 +

(
η1I + η2

2
∇T

1 ∇1 + η2∇T
2 ∇2

)
W2

= η1

(
∇2X(k+1) − D(k)

2 +
θ
(k)
2
η1

)
+η2∇T

1

(
G3 − ξ

(k)
3
η2

)
+ η2∇T

2

(
G2 − ξ

(k)
2
η2

)
(17)

We have a system of linear equations (17) in two un-
knowns W(k+1)

1 ,W(k+1)
2 :[

u v
e f

] [
W(k+1)

1

W(k+1)
2

]
=

[
s
t

]
(18)

with

u =

(
η1I + η2∇T

1 ∇1 +
η2
2
∇T

2 ∇2

)
, v =

η2
2
∇T

2 ∇1,

e =
η2
2
∇T

1 ∇2, f =
(
η1I +

η2
2
∇T

1 ∇1 + η2∇T
2 ∇2

)
,

s =
(
η1

(
∇1X(k+1) − D(k)

1 +
θ
(k)
1

η1

)
+ η2∇T

1

(
G1 −

ξ
(k)
1

η1

)
+ η2∇T

2

(
G3 −

ξ
(k)
3

η1

))
,

t = η1

(
∇2X(k+1) − D(k)

2 +
θ
(k)
2

η1

)
+ η2∇T

1

(
G3 −

ξ
(k)
3

η2

)
+ η2∇T

2

(
G2 −

ξ
(k)
2

η2

)
Similar to the X subproblem, we can solve problems

(18) with fast Fourier transform (FFT), under the peri-
odic boundary conditions:

W(k+1) = (W(k+1)
1 ,W(k+1)

2 )T (19)
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where

W(k+1)
1 = F−1

(
F(sf − vt)
F(uf − ev)

)
,

W(k+1)
2 = F−1

(
F(ut − es)
F(uf − ev)

)
.

– For the D and G subproblem:

D(k+1) = argmin
D

(
α1γ

(k)
1 ∥D∥1

− ⟨θ,D −∇X(k+1) + W(k+1)⟩

+
η1
2
∥D −∇X(k+1) + W(k+1)∥22

)
= argmin

D

(
α1γ

(k)
1 ∥D∥1

+
η1
2
∥D −∇X(k+1) + W(k+1) − θ(k)

η1
∥22
)
.

G(k+1) = argmin
G

(
α2∥G∥1 − ⟨ξ(k),G − E(W(k+1))⟩

+
η2
2
∥G − E(W(k+1))∥22

)
= argmin

G

(
α2γ

(k)
2 ∥G∥1

+
η2
2
∥G − E(W(k+1))− ξ(k)

η2
∥22
)
.

The solution of the subproblems can readily be ob-
tained by applying the soft thresholding operator [Mic-
chelli, Shen and Xu, 2011]:

D(k+1) = Shrink(∇u(k+1) − w(k+1) +
θ(k)

η1
,
α1γ

(k)
1

η1
),

(20)

G(k+1) = Shrink(E(w(k+1)) +
ξ(k)

η2
,
α2γ

(k)
2

η2
). (21)

where Shrink(y, φ) = y
|y| ·max(|y| − φ, 0).

–The Z subproblem:

Z(k+1) = argmin
Z

(
λ

2
(Z − Y)2 + β⟨1,Z − Y logZ⟩

− ⟨ρ(k)3 ,Z − X(k+1)⟩+ η3
2
∥Z − X(k+1)∥22

)
= argmin

z

(
λ

2
(Z − Y)2 + β⟨1,Z − Y logZ⟩

+
η3
2
∥Z − X(k+1) − ρ

(k)
3

η3
∥22
)
.

Therefore, we get:

λ(Z − Y) + β(1− Y
Z
) + η3(Z − X(k+1))− ρ

(k)
3 = 0.

This equation can be rewritten as follows:

(λ+ η3)Z2 − Z(η3X(k+1) + ρ
(k)
3 − β + λY)− βY = 0.

The solution of z(k+1) is the positive solution given by:

Z(k+1) =
−B +

√
B2 − 4AC
2A

. (22)

where A = λ+η3, B = −(η3X(k+1)+ρ
(k)
3 −β+λY),

C = −βY.
The complete method is summarized in Algorithm 1.

We need a stopping criterion for the iteration: we end the
loop if the maximum number of allowed outer iterations
N has been carried out (to guarantee an upper bound on
running time) or the following condition is satisfied for
some prescribed tolerance ς:

∥X(k) − X(k−1)∥2
∥X(k)∥2

< ς, (23)

where ς is a small positive parameter.

Algorithm 1: Alternating minimization method for
solving the model (8)

1. Initialize: Z(0) = q(0) = Y;
D(0) = G(0) = W(0) = 0; k = 1
2. while Stopping condition is not satisfied do
3. Compute X(k+1) according to (15)
4. Compute D(k+1) according to (20)
5. Compute G(k+1) according to (21)
6. Compute Z(k+1) according to (22)
7. Update θ(k+1), ζ(k+1), µ(k+1) by (13)
8. k = k + 1
9. endwhile
10. return u

3 Numerical experiments
In this section, we present several simulation results

to illustrate the performance of the proposed model for
MPGN removal. To further exhibit the image denois-
ing performance, our method is compared with the TV,
TGV regularized convex models. The compared models
are implemented by the state-of-the-art alternating mini-
mization algorithm. All experiments were carried out in
Windows 10 and Matlab running on a desktop equipped
with an Intel Core−i3, 2.1 GHz and 12 GB of RAM.
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We terminate the iterations of all tested algorithms
with tolerance ϵ = 0.0001. Meanwhile, we take peak
signal-to-noise ratio (PSNR), and structural similarity
index (SSIM)[Wang and et al., 2004] for the quantita-
tive evaluation. Empirically, all images are processed
with the equivalent parameters λ = 0.4, β = 0.6, η1 =
1.2, η2 = 1.2, and η3 = 1, which gave the best restora-
tion results. The observed images in our experiments are
simulated as follows. Noisy observations are generated
by Poisson with some fixed peak IP , and by Gaussian
noise with standard deviation IG .

In the first example, we show the image denoising
performance of compared method TV, TGV and Our
proposed. The original ‘Peppers’ image is sized by
256 × 256 pixels (Figure 1a). Figure (1)b represent its
noisy versions degraded by IP = 120, IG = 5. The
restorations by the TV, TGV and our method are pre-
sented in Figures (1) (c) – (d). Meanwhile, we show the
zoomed-in part of the recovered images in Figure (2).
The quantitative comparisons are also reported in Table
(1).

Secondly, another standard 8-bit grayscale image ‘As-
teroidea’ shown in Figure (2)a. The given image with
size 256 × 256 pixels is contaminated by IP = 120,
IG = 10 (Figure 2b). The visual comparison of restored
images by compared methods is represented in Figures
(2)c – (2)d, respectively. Meanwhile, the quantitative
evaluations of the compared methods are reported in Ta-
ble (2).

In Figure (4), we present the restoration result ob-
tained by compared method for the ‘Parrot’ (Figure (4)a,
256 × 256 pixels). The given image is degraded by
IP = 60, IG = 5 (Figure (4)b). The details of the
original are shown in Figure 4c –d. In next rows of the
Figure (4), we represent the restorations and their details
by the TV (Figure 4e – g), TGV (Figure 4h – 4j)and our
method (Figure 4k – 4m), respectively. The comparisons
of quantitative values are provided in Table (3) in more
detail.

Finally, we test the performance of our method for
dealing with color image restoration. The original image
‘Lena’ sized by 256× 256 is shown in Figure (5)a. The
observed image with noisy level IP = 60, IG = 10 is
shown Figure (5)b. The details of the original are shown
in Figure (5)c – (5)d. In next rows of the Figure (5),
we show the obtained results and their details by the TV
(Figure 5e – 5g), TGV (Figure 5h – 5j)and our method
(Figure 5k – 5m), respectively. Moreover, we report the
quantitative values in Table (4) .

Form Figures (1) – (5), we can see that undesirable
staircase artifact in our recovered results is fewer than
those of the TV method and TGV method. Besides, The
comparisons reported in Tables (1) – (4) indicate that our
method outperforms other relative methods in restora-
tion precision, especially, in PSNR, SSIM values. It is
obvious that our model provides improved visual qual-
ity.

4 Conclusions
In this paper, we have investigated non–convex TGV 2

α

based model for denoising image corrupted by MPGN.
Computationally, an alternating minimization algorithm
is employed for solving the proposed optimization prob-
lem. Finally, compared with several existing state-of-
the-art approaches, the experiments demonstrate com-
petitive performance of the proposed method.
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