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ABSTRACT We describe the model corresponding
to a one degree-of-freedom mechanical system fixed
to a support via a cascade of non smooth constitu-
tive laws: The basic nonlinearity of the constitutive
terms consists of dry-friction elements. We study
dynamical behavior of the system. The model of the
studied mechanical system corresponds to the motion
of an elastoplastic chain driving one mass on a fixed
support.

1. Introduction

In this work we are going on the study of varied
classes of dynamical behaviors of wide classes of
nonlinear oscillators including non smooth terms of
Saint-Venant (or dry friction) type. Previous works
are devoted to the mechanical, numerical and math-
ematical study of one-degree-of-freedom or multi-
degree-of-freedom oscillators that may include also
delay terms or history terms under deterministic ex-
ternal solicitations or under stochastic excitations:
See references [Bas00, SLB99, BSL00, LBB05, BS02,
BS00, Ber03, LBH03, BSL04a, BSL04b, BL05,
LBH05, BL07a, BL07b].

In this paper, we describe the model corre-
sponding to a one degree-of-freedom mechanical sys-
tem fixed to a support via a cascade of non smooth
constitutive laws that consist of dry-friction ele-
ments. We study dynamical behavior of the system.
Let us notice that quasi-static behavior could also be
investigated via the same method and quasi-static
model derived from the present one. The model of
the studied mechanical system corresponds to the
motion of an elastoplastic chain driving one mass
on a fixed support. We show that mathematical ex-
pression of the system is

Ẋ +M∂Φ(X) � f(t,X), X(0) = X0, (1.1)

where for a real T > 0, and convenient integer N ,
X : [0, T ] �→ R

N is a function, f : [0, T ] × R
N is a

Lipschitz continuous function from [0, T ]×R
N to R

N

that contains external deterministic solicitation, Φ
is a convex function from R

N to ]−∞,+∞], ∂Φ(X)
is its sub-differential at X defining a maximal mono-
tone operator (see [Bre73]), M ∈ MN (R) is a sym-
metric positive definite matrix.

1Adress all correspondence to this author : jerome.bastien@univ-lyon1.fr
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The studied system is different from previ-
ously considered systems either classical ones (see
[BSL00, LBB05]) or gephyroidal model ([BL07b]).

The mathematical model and its numerical
treatment is close to the case of the gephyroidal
model ([BL07b]) because en euclidean non classical
metrics is also used. Nevertheless the geometry of
the cascade depends on an arbitrary number of dry
friction elements contrary to the gephyroidal basic
model.

The paper is organized as follows. In Section 2,
we describe the studied class of models. In Section
3, we give mathematical expression of the model.
In Section 4, we provide numerical scheme for the
model and give mathematical properties. Finally we
sum up main results of this work as a conclusion.

2. Description of the model

The frame of maximal monotone operators is conve-
nient for the study of wide classes of elastoplastic
oscillators. Let us consider here a one-degree-of-
freedom oscillator that consists of one mass m os-
cillating on an horizontal plan, fixed to a support
via a cascade of n + 1 springs with stiffness ki > 0
(i = 0, . . . , n) and n Saint-Venant elements (dry fric-
tion elements) with threshold αi > 0 (i = 1, . . . , n)
as described in Figure 1 in Appendix B. Let x de-
note the horizontal displacement of mass m submit-
ted to external forcing F .

This model does not correspond to any associ-
ation of elementary sub-models involving either one
spring and one Saint-Venant element settled in se-
ries or one spring and one Saint-Venant element set-
tled in parallel. It does not correspond to gephyroid
model [BL07b]. Nevertheless the model can be ex-
pressed via a differential inclusion of type (1.1).

For i ∈ {0, . . . , n} let us denote (see Figure 2 in
Appendix B)

• ui the displacement of the spring number i
vs its reference position,

• fi the internal force of the spring number i
associated to displacement ui .

For i ∈ {1, . . . , n} let us denote (see Figure 2 in
Appendix B)

• vi the displacement of the Saint-Venant ele-
ment number i vs its reference position,

• gi the internal force of the Saint-Venant el-
ement number i associated to displacement
vi.

Each constitutive element possesses its consti-
tutive law that can be written as:

∀i ∈ {0, . . . , n}, fi = −kiui, (2.1)

and
∀i ∈ {1, . . . , n}, gi ∈ αiσ(v̇i) (2.2)

where σ denotes the graph of the sign function de-
fined by σ(z) = {−1} if z < 0, σ(z) = {1} if z > 0,
σ(z) = [−1, 1] if z = 0.

Taking into account that any of the springs 1
to n and any of the Saint-Venant element is only
linked to the spring numbered 0 and to the mass m,
we can write fundamental relation for the mass m
in the form ( ˙= d/dt)

mẍ = f0 + F. (2.3)

Geometrical relations have to be included in the
form

∀i ∈ {1, . . . , n}, x = vi +
i−1∑
j=0

uj, (2.4)

and
un = vn, (2.5)

up to constants corresponding to reference positions
of each constitutive element. Equilibrium of each
node of the considered system leads to

∀i ∈ {0, . . . , n− 1}, fi = fi+1 + gi+1, (2.6)

and finally

f0 =
n∑

i=1

gi + fn. (2.7)

Indeed, equation (2.7) is useless since it can be ob-
tained by summation of equations (2.6).

3. Mathematical expression of the class of
models

From previous Section, one can see that the model
is expressed via equations (2.1), (2.2), (2.3), (2.4),
(2.5), (2.6).

Using (2.3), (2.1) (for i = 0) and (2.4) (for
i = 1) one has

mẍ = −k0u0 + F = −k0(x− v1) + F. (3.1)
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Using successively (2.6), (2.2) then (2.1) we can ob-
tain :

∀i ∈ {1, . . . , n}, kiui − ki−1ui−1 ∈ −αiσ(v̇i).
(3.2)

System of equations (2.4), (2.5) can be inverted so
that⎧⎪⎪⎨

⎪⎪⎩
u0 = x− v1,

∀i ∈ {1, . . . , n− 1}, ui = vi − vi+1,

un = vn.

(3.3)

Finally we obtain the following constitutive model
in the form⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−k0x+ (k0 + k1)v1 − k1v2 ∈ α1σ(v̇1),

∀i ∈ {2, . . . , n− 1},
−ki−1vi−1 + (ki−1 + ki)vi − kivi+1 ∈ −αiσ(v̇i),

−kn−1vn−1 + (kn−1 + kn)un ∈ −αnσ(v̇n).
(3.4)

Let us introduce the inverse graph of σ, denoted β

and defined by

β(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅ if x ∈ (−∞,−1) ∪ (1,+∞),

{0} if x ∈ (−1, 1),

R− if x = −1,

R+ if x = 1.

(3.5)

Equation (3.4) can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇1 + β

(−k0x+ (k0 + k1)v1 − k1v2
α1

)
� 0,

∀i ∈ {2, . . . , n− 1},
v̇i + β

(−ki−1vi−1 + (ki−1 + ki)vi − kivi+1

αi

)
� 0,

v̇n + β

(−kn−1vn−1 + (kn−1 + kn)un

αn

)
� 0.

(3.6)
Now, using a convenient change of variables, the

mathematical model of our problem can be formu-
lated in the form (1.1). Let us introduce the tridiag-
onal n× n matrix K defined by (A.1), in Appendix
A. It can be easily proved that K is a symmetric
positive definite matrix of Mn(R).

Let us define V , Z and W vectors of R
n by

V =

⎛
⎜⎜⎜⎜⎝
v1
...
...
vn

⎞
⎟⎟⎟⎟⎠ , Z =

⎛
⎜⎜⎜⎝
k0x

0
...
0

⎞
⎟⎟⎟⎠ (3.7)

and
W = KV − Z. (3.8)

Equation (3.6) can be expressed as

∀i ∈ {1, . . . , n}, v̇i + β

(
wi

αi

)
� 0, (3.9)

or in the equivalent form

V̇ + ∂ψ[−α1,α1]×···×[−αn,αn](W ) � 0. (3.10)

where ψ[−α1,α1]×···×[−αn,αn] denotes the convex
function indicatrix of the convex domain [−α1, α1]×
· · · × [−αn, αn] ⊂ R

n. Clearly from (3.8) we have

V̇ = K−1(Ẇ + Ż). (3.11)

From equations (3.1), (3.6), and (3.11), we obtain
the system of differential inclusions{

mẍ+ k0x− k1v1 = F,

Ẇ +K∂ψ[−α1,α1]×···×[−αn,αn](W ) � −Ż.
(3.12)

Let us denote [U ]1 the first component of any vec-
tor U ∈ R

m, for m integer. Let us set y = ẋ and
u = (1, 1, . . . , 1)T ∈ R

n and v = (1, 0, . . . , 0)T ∈ R
n.

The problem defined by equations (3.1) and (3.6)
can be developed in⎧⎪⎪⎨
⎪⎪⎩

ẋ = y,

ẏ = (F − k0x+ k0[K−1W ]1 + k2
0x[K

−1u]1)/m,

Ẇ +K∂ψ[−α1,α1]×···×[−αn,αn](W ) � −k0yv.

(3.13)
Let us introduce the (n + 2) × (n + 2) symmetric
definite positive matrix M defined by

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
0 1 0 . . . 0
0 0
...

... K

0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.14)

Finally let us introduce vector X in R
n+2 defined by{

X(t) = (x(t), y(t),W (t))T ,

X(0) = (x(0), y(0),W (0))T ,
(3.15)

and

F(t,X(t)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y

C

−k0y

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.16)



4

where

C = (F − k0x+ k0[K−1W ]1 + k2
0x[K

−1u]1)/m.
(3.17)

The problem can be written in the announced
form: {

Ẋ +M∂ψC(X) � F(t,X(t)),

X(0) = X0.
(3.18)

where ψC denotes the convex function indicatrix of
the convex domain C = R × R × [−α1, α1] × · · · ×
[−αn, αn] ⊂ R

n+2 and N = n+ 2.

4. Numerical scheme for the general model

Based on previous works [BS02, BS00, Bas00], one
can prove that the problem (3.18) possesses an
unique solution X ∈ W 1,∞(0, T ; Rn+2), if F ∈
H1(0, T ). Due to the expression of the problem in
the frame of maximal monotone operators, a numer-
ical scheme can be built. Let h > 0 be time step,
and to simplify tq = qh for any integer q ≥ 0. One
can write:⎧⎨

⎩
Xq+1 −Xq

h
+M∂ψC(Xq+1) � F(tq, Xq),

X0 = X0.

(4.1)
From previous theoretical works[BS02, BS00,

Bas00], we can prove that this Euler implicit type
numerical scheme is convergent with optimal order
1, i.e. O(h).

5. Conclusion

The main results of this paper are

• in the mechanical point of view, the descrip-
tion of a system that can not be described
by classical assemblies of springs and Saint-
Venant elements or gephyroid types models,

• in the mathematical point of view, the de-
scription of the model of the system in the
frame of maximal monotone operators lead-
ing to an unique solution of the problem ap-
proximated by a non event driven numerical
scheme with optimal convergence order 1.
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Appendix A. Definition of K

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

k0 + k1 −k1 0 0 . . . 0 0 0
−k1 k1 + k2 −k2 0 . . . . . . 0 0
0 −k2 k2 + k3 −k3 0 . . . . . . 0

...
... . . . . . .

...
...

...
...

0 0 . . . 0 0 −kn−2 kn−2 + kn−1 −kn−1

0 0 . . . . . . . . . 0 −kn−1 kn−1 + kn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.1)

Appendix B. Figures
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Figure 1. One-degree-of-freedom system with a cascade of Saint-Venant elements.
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Figure 2. One-degree-of-freedom system with a cascade of Saint-Venant elements with dis-
placements x, ui and vi and forces fi and gi.


