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Abstract

In this paper we relate the problem of finding all feedback classes of Brunovsky
and locally Brunovsky linear systems defined on a commutative ring with combina-
torial problems of visiting respectively all Ferrers and colored Ferrers diagrams of a
fixed size.

On the other hand, in the case of rings of real continuous functions defined on
a compact topological space we point out the topological properties related to the
problem. We study the dimension1 case and comment the2-dimensional case.
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1 Introduction

Let R be a commutative ring with identity element1 6= 0. A sequential linear control
system is a discrete time (T = Z) dynamical system following a linear rule (or right hand
side) on the form

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t)

wherex(−) : Z → X is the sequence of internal states,y(−) : Z → Y is the sequence
of outputs of the system, andu(−) : Z → U is the sequence of external controls (usually
fixed or designed by the controler).

SetsX (of internal states),Y (of outputs), andU (of controls or external inputs) are
R-modules in our context while mapsA : X → X, B : U → X, andC : X → Y are
R-linear maps. We describe the above sequential linear control system (linear system) by
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2 M.V. Carriegos

using the diagram

Σ :
U Y

ցB C ր
X →A X

The classical case is whenR = K is either the field of real numbers or the field of
complex numbers andX ∼= Kn, Y ∼= Kp, andU ∼= Km are finite dimensional based
K-vector spaces. In this case, a linear system is given by a triple of matrices.

Σ :
Km Kp

ցB C ր
Kn →A Kn

There are many subjects in control theory. Some of them may be sumarized as“related
to reachability” and involves only the left half of above picture; that is, output space plays
no rôle. One of that subjects is feedback equivalence. Hence in the sequeloutputs will not
be considered and linear systems are, in this context, reduced to

Σ :
U

ցB

X →A X

For general reading on linear systems over commutative rings the reader isreferred to
[1].

Feedback equivalence of linear systems

The algebraic equivalence of linear systems deals with the study of linear systems up to
isomorphisms in the input and state modules . But it is more interesting (from the control
theoretic side) to allow linear feedback actions on linear systems; that is to saywe are
allowed to design controls as linear functions of the current stateu = Fx. This “closed
loop” is at the very heart of control theory. To be concise:

Linear systems:

Σ :
U

ցB

X →A X

and

Σ′ :

U ′

ցB′

X ′ →A′

X ′
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are said to beFeedback Equivalentif we can bring one of them into the another by a finite
composition of the followingBasic Feedback Actions:

1. IsomorphismsQ : U → U ′ in the input module which transforms

(A, B) → (A, BQ)

2. IsomorphismsP : X → X ′ in the state module which transforms

(A, B) → (PAP−1, PB)

3. Feedback actionsF : X → U which transforms

(A, B) → (A + BF, B)

Consequently a general feedback action(P, Q, F ) brings linear systemΣ = (A, B) to
system:

(A, B) → (P (A + BF )P−1, PBQ)

If two linear systemsΣ = (A, B) and Σ′ = (A′, B′) are feedback equivalent via
(P, Q, F ) then linear maps

ϕΣ
i =

(

B AB · · · Ai−1B
)

: U⊕i −→ X

and
ϕΣ′

i =
(

B′ A′B′ · · · (A′)i−1B′
)

: (U ′)⊕i −→ X ′

are equivalent linear maps (in the sense of there exists an isomorphismα : (U ′)⊕i → U⊕i

such thatϕΣ′

i = P · ϕΣ
i · α). This is because one has an equivalence of mapsϕΣ

i andϕΣ′

i

for any basic feedback action:

1. IsomorphismQ in input modules brings(A, B) to (A, BQ) yields the equivalence

ϕΣ′

i = ϕΣ
i













Q 0 · · · 0

0 Q
.. .

...
...

. . . .. . 0

0 · · · 0 Q













2. IsomorphismP in state modules brings(A, B) to (PAP−1, PB) yields the equiva-
lence

ϕΣ′

i = PϕΣ
i
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3. Feedback actionF : X → U of states onto inputs brings(A, B) to (A+BF, B) and
consequently one has the equivalence

ϕΣ′

i = ϕΣ
i



















1 FB F (A + BF )B · · · F (A + BF )i−1B

0
. .. .. . . . .

...
...

. .. .. . F (A + BF )B
...

.. . . . . FB
0 · · · · · · 0 1



















Therefore linear mapsϕΣ
i andϕΣ′

i are equivalent anda fortiori cokernels (and images)
are isomorphic. This gives us our main invariants. To be concise, we haveproven the
following result:

Lemma 1.1. (cf. [4] Lemma 3) Consider the linear system

Σ :
U

ցB

X →A X

TheR-modulesNΣ
i = Im(ϕΣ

i ) and MΣ
i = Coker(ϕΣ

i ) = X/Im(ϕΣ
i ) are feedback

invariants, up to isomorphism associated to linear systemΣ.

Some properties of the invariantR-modules are directly obtained:

Lemma 1.2. With the above notations the following properties hold:

1. There exists an indexs ≥ 0 such that:

0 = NΣ
0  NΣ

1  · · ·  NΣ
s−1  NΣ

s = NΣ
s+1 = · · ·

2. Quotient moduleNΣ
i+1/N

Σ
i is the kernel of the natural surjective mapMΣ

i → MΣ
i+1

3. Quotient modulesNΣ
i+1/N

Σ
i are also feedback invariants associated to systemΣ.

Proof.- To prove(1) first note that a Cayley-Hamilton Theorem applies on endomor-
phismA : X → X of finitely generated projectiveR-moduleX (see [11] Theorem IV.17)
andA satisfies a monic polynomialχ(z) ∈ R[z]. Thus there exists an indexs = deg(χ)
such thatAs is a linear combination of1, A, ..., As−1. Consequentlyℑ(As+1B) ⊆ NΣ

i .
Now to conclude the proof of(1) note that ifNΣ

i = NΣ
i+1 then it follows thatA(NΣ

i ) ⊆
NΣ

i and consequentlyAj(NΣ
i ) ⊆ NΣ

i for all j. Hence it follows that(NΣ
i ) = NΣ

i+j for all
j.
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(2) The natural quotient mapMΣ
i → MΣ

i+1 sendingx + NΣ
i 7→ x + NΣ

i+1 is obviously
well defined and onto. Its kernel is the module

{x + NΣ
i : x ∈ NΣ

i+1} = NΣ
i+1/N

Σ
i

To prove(3) consider two feedback equivalent linear systemsΣ andΣ′ and the com-
mutative diagram with exact rows:

0 → NΣ
i+1/N

Σ
i → MΣ

i → MΣ
i+1 → 0

↓ 	 l 	 l
0 → NΣ′

i+1/N
Σ′

i → MΣ′

i → MΣ′

i+1 → 0

where the isomorphisms are those obtained in Lemma 1.1. The first linear map is the
quotient of the restriction of isomorphismP : X → X in the feedback action. Short Five
Lemma implies that this linear map is also an isomorphism

A natural question is: When does the above set of invariants characterize the feedback
class of a linear system?

Answer is that those invariants are sufficient in the case of reachable linear systems over
a finite dimensional vector space (that is, the Classical Brunovsky’s Theorem in [2]). For
reader’s convenience we review the notion of reachable linear system inour context:

Definition 1.3. Linear system

Σ :
U

ցB

X →A X

is called reachable if there exists an indexs (this s is the sames above which stabilize the
chain ofNΣ

i ) such that the following equivalent conditions hold:

1. NΣ
s = X (not only isomorphic, but equal)

2. MΣ
s = 0

In the general case of commutative rings, the invariants we introduced arenot sufficient
to state the feedback class of a linear system even for the dimensionm = n = 1 case: Think
in systemsΣ = ((2), (0)) andΣ′ = ((2), (1)) defined overU = U ′ = X = X ′ = Z.

In fact it is proven in [6] that the class of commutative rings where those invariants do
characterize the feedback classes of reachable linear systems is exactlythe class of fields.
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2 Brunovsky systems and their Ferrer’s Diagrams

The linear system is a reachable linear system

Σ :
Rm

ցB

Rn →A Rn

is called of Brunovsky type if it is equivalent to a Brunovsky canonical form (see [6], [7]).
In the case ofR = K being a field, a Brunovsky linear system is just a reachable linear
system. The same is true for the case of linear systems such that all its invariants are free
defined over commutative ringsR such that finitely generated projectiveR-modules are
free (see [7]).

The key is that, in the case of reachable linear systems over a field or, in the more
general framework of projective-free rings, if all theR-modulesNΣ

i+1/N
Σ
i are free then

they are really a complete set of invariants verifying that

X = NΣ
1 ⊕ NΣ

2 /NΣ
1 ⊕ · · · ⊕ NΣ

s /NΣ
s−1

Let us denote byξΣ
i the dimension of the freeR-moduleNΣ

i /NΣ
i−1 in the Brunovsky case.

It follows that
s

∑

i≥1

ξΣ
i = n = dimX

On the other hand, the set
ξΣ
1 , ξΣ

2 , ..., ξΣ
s

characterizes the feedback class of systemΣ.
Moreover, because of one has the splitting surjective map

A : NΣ
i /NΣ

i−1 → NΣ
i+1/N

Σ
i

x + NΣ
i−1 → Ax + NΣ

i

it follows that the sequence ofξi is decreasing; that is,ξΣ
i ≥ ξΣ

i+1 for all i.
Thus, once we have fixed a projective-free ringR and the dimensionsm andn, all

feedback classes of linear systems of the form

Σ :
Rm

ցB

Rn →A Rn

are in one-to-one correspondence with the set of partitions of integern in decreasing
sequences, or, equivalently or by all the Ferrers diagrams of integern.
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For example, if we setn = 6 we have the following Ferrers diagrams visited following
the reverse lexicographical order (see [9]):

Consequently, the description of all types of Brunovsky linear systems over a commu-
tative ringR does not depend on the ringR but on the dimensionn of free state module
X. In fact, there are exactlyp(n) Brunovsky linear systems over a free moduleX ∼= Rn,
wherep(n) is the number of partitions of integern into decreasing integers.

The study of the number of partitions goes back to L. Euler, who introducedin the
XVIII century the main tools and seminal results. However,p(n) is easily obtained for
small values ofn.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
p(n) 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176

For large values ofn we may estimatep(n) by analytic methods (see [9] for details).
To conclude, note that we didn’t say a word on the dimension ofU in the above discus-

sion. BecauseNΣ
1 is an homomorphic image ofU and (in the particular case of Brunovsky

systems) it is also a direct summand ofU ; it follows that the first row of Ferrers diagram
of Σ (the dimension ofNΣ

1 ) needs to be lower than the dimension ofU . Consequently if
m is fixed then the number of feedback classes of Brunovsky systems is in fact pm(n), the
number of decreasing partitions ofn into pieces lower thanm. Note that the extremal case
m = 1 yieldsp1(n) = 1 representing the Canonical Controller Form.

3 Locally Brunovsky systems and coloured Ferrer’s Diagrams

Let R be a commutative ring,U andX finitely generated projectiveR-modules and

Σ :
U

ցB

X →A X
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a linear system. A ring homomorphismf : R → S defines an additive functorProj(R) →
Proj(S) from finitely generated projectiveR-modules to finitely generated projectiveS-
modules sendingP to P ⊗R S (see [15] for example). Thus a new linear system

f∗(Σ) :
U ⊗R S

ցB⊗1

X ⊗R S →A⊗1 X ⊗R S

arises as extension of scalars fromR to S via f .
If U andX are based free modules (henceA andB are given by its matrices in the fixed

bases) andS = R/I whereI is a ideal ofR andf is the standard quotient mapr 7→ r, then
systemf∗(Σ) is just given by residual matricesA andB moduloI.

If K is a compact topological space andR = C(K) is the ring of real continuous
functions defined onK then the mapP 7→ mP = {f ∈ C(K) : f(P ) = 0} is an home-
omophism fromK to the topological space Max(R) (the maximal spectrum ofR together
with the Zariski topology). Hence the ring homomorphismR → R/m is the evaluation of
functions atP and provides the puntual study of systems.

On the other hand, if we consider the ring homomorphismR → Rp we have the local-
ization of systems and the local study. The interested reader is referred to[5] for detais.

Definition 3.1. Let

Σ :
U

ցB

X →A X

be a linear system andP a property of linear systems (i.e. being reachable, Brunovsky,
controllable, pole-assignable,...). We say thatΣ is locally-P (over R) if and only if all
localizations

Σp :
U ⊗ Rp

ցB⊗1

X ⊗ Rp →A⊗1 X ⊗ Rp

areP overRp for all prime idealp of R.
A propertyP of linear systems is local if one has

P ⇔ Locally-P

Note that because ofU andX are finitely generated projectiveR-modules it follows
that their localizations atp: U ⊗ Rp andX ⊗ Rp are free of finite dimension.
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One the other hand, note that reachability is a local property of linear systems because
it is stated in terms of surjectivity of a linear map. Some other properties are notlocal:
Controllability, Pole-Assignability.

Next we deal with the locally Brunovsky property: A locally-Brunovsky linear sys-
tem verifies that the localizationsΣp are Brunovsky. Hence the invariantsM

Σp

i are free.

Because tensor product is right exact functor it follows thatM
Σp

i
∼= MΣ

i ⊗ Rp and the
result:

Lemma 3.2. A locally Brunovsky linear systemΣ has locally free (i.e. projective) invari-
antsMΣ

i .
The converse is also true and a locally Brunovsky linear systemΣ is a reachable linear

system such thatR-modulesMΣ
i are projective for alli.

Of course if commutative ringR verifies that finitely generated projectiveR-modules
are free (for example ifR is a field, ifR is local, or the ring of rational integersZ, or a poly-
nomial ringk[t1, ..., tn] wherek is a field, ...) then Brunovsky = Locally Brunovsky. But,
in general, we have Brunovsky⇒ Locally Brunovsky and not the converse (see bellow).

Note that ifK is a compact topological space and we consider the ringR = C(K) of
real valued continuous functions defined onK then finitely generated projectiveR-modules
are in one to one correspondence with vector bundles overK (Swan’s Theorem [14]). Thus
finitely generatedR-modules (and a fortiori locally Brunovsky linear systems) are charac-
terized by the topological properties ofK.

ConsiderK = [0, 1] be the unit closed interval inR or, in general,K be a compact
contractible space. Because of every vector bundle is trivial it follows that finitely generated
C(K)-modules are free and therefore every locally Brunovsky linear systemoverC(K) is
of Brunovsky type.

On the other hand, the converse does not hold if the compact space admits nontrivial
vector bundles: PutK = {(x, y) ∈ R2 : x2 + y2 − 1 = 0} = S1 the unit sphere inR2, and
the linear system (cf. [3])

Σ :

C(S1)2

ց
B=





x − 1 y
−y x + 1





C(S1)2 →
A=





1 −1
1 1





C(S1)2

This linear system is locally of Brunovsky type. LocalizationΣp of Σ at any point

(maximal idealp of C(S1)) gives us a linear system with Ferrers diagramξ
Σp

1 = ξ
Σp

2 = 1;
that is:
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But howeverΣ is not Brunovsky becauseMΣ
1 is a non-free rank1 projectiveC(S1)-

module.
How can we study the feedback classes of locally Brunovsky linear systems? Next we

introduce our main result which is based in the splitting properties of projective modules.

Theorem 3.3. Let R be a commutative ring and letU , X be two finitely generatedR-
modules. Consider the linear systemΣ given by:

Σ :
U

ցB

X →A X

If MΣ
1 is projective then:

1. X ∼= NΣ
1 ⊕ MΣ

1 andU ∼= NΣ
1 ⊕ ker(B)

2. SystemΣ is feedback equivalent to linear system:

Σ′ :

NΣ
1 ⊕ ker(B)

ց





1 0

0 0



 (

0 0

a21 a22

)

NΣ
1 ⊕ MΣ

1 −→ NΣ
1 ⊕ MΣ

1

Proof.- Part(1) follows from the exact splitting natural sequence (MΣ
1 is projective):

0 → NΣ
1 →inclusion X →quotient MΣ

1 → 0

On the other hand, the second isomorphism follows directly of the exact splitting se-
quence

0 → ker(B) →inclusion U →B NΣ
1 → 0

To prove(2) we need only to consider that, according to decompositions in(1) we have
thatB is given by the matrix of linear maps

B =

(

1 0

0 0

)
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where1 is the identity linear map and0 is the zero linear map. Thus the feedback action

F =

(

−a11 −a12

0 0

)

bringsΣ to Σ′

Definition 3.4. With the above notations we defineδ(Σ) = (a22, a21) as the linear system:

δ(Σ) :
NΣ

1

ցa21
a22

MΣ
1 −→ MΣ

1

Lemma 3.5. Suppose that linear system

Σ :
U

ցB

X →A X

is locally of Brunovsky type; that is,Σ is reachable and all invariant modulesMΣ
i are

projective. Then the following properties hold:

1. M
δ(Σ)
1

∼= MΣ
2 , consequently one can obtainδ2(Σ) = δ(δ(Σ))

2. In general,M δ(Σ)
i

∼= MΣ
i+1

3. We have a finite sequence of decreasing systemsδi(Σ) in the sense of their state
spaces are isomorphic toMΣ

i .

4. N
δ(Σ)
i+1 /N

δ(Σ)
i

∼= N
δ2(Σ)
i /N

δ2(Σ)
i−1

5. U ∼= NΣ
1 ⊕ ker(B)

6. X ∼=
⊕

i≥1 NΣ
i /NΣ

i−1

Proof.- To prove(1) and (2) just write down and compare matrices of linear maps

ϕ
δ(Σ)
i andϕΣ

i+1. Remain items follows directly by standard calculations on the direct sum
decomposition of involved modules



12 M.V. Carriegos

Consequently, for a reachable linear systemΣ with all invariantR-modulesMΣ
i being

projective, the feedback class characterizes, up to isomorphism the finitely generatedR-
modules

ker(B)
NΣ

1 = Im(B)
NΣ

2 /NΣ
1 = Im(B, AB)/Im(B)

...
...

...
NΣ

i+1/N
Σ
i = Im(B, AB, ..., AiB)/Im(B, AB, ..., Ai−1B)

...
...

...

,

The converse is also true; that is, above data characterizes the feedback class ofΣ:

Lemma 3.6. If δ(Σ) andδ(Σ′) are feedback equivalent andker(B) andker(B′) are iso-
morphic thenΣ andΣ′ are feedback equivalent.

Proof.- Suppose thatδ(Σ) = (a22, a21) andδ(Σ′) = (a′22, a
′
21) are feedback equivalent

by a basic feedback action of type state-space isomorphism. Then

a′22 = Pa22P
−1a′21 = Pa21

Consequently

(

0 0

a′21 a′22

)

=

(

1 0

0 P

)(

0 0

a21 a22

) (

1 0

0 P−1

)

and
(

1 0

0 0

)

=

(

1 0

0 P

)(

1 0

0 0

)

Now suppose thatδ(Σ) = (a22, a21) andδ(Σ′) = (a′22, a
′
21) are feedback equivalent

by a basic feedback action of type input-space isomorphism. Then

a′22 = a22a
′
21 = a21Q

Consequently

(

0 0

a′21 a′22

)

=

(

Q−1 0

0 1

)(

0 0

a21 a22

)(

Q 0

0 1

)

and
(

1 0

0 0

)

=

(

Q−1 0

0 1

)(

1 0

0 0

)(

Q 0

0 1

)
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Now suppose thatδ(Σ) = (a22, a21) andδ(Σ′) = (a′22, a
′
21) are feedback equivalent

by a basic feedback action of type feddback. Then

a′22 = a22 + a21Fa′21 = a21

Consequently

(

0 0

a′21 a′22

)

=

(

1 −F
0 1

)(

0 0

a21 a22

) (

1 F
0 1

)

+

+

(

1 0

0 1

) (

Fa21 Fa21F − Fa22

0 0

)

and
(

1 0

0 0

)

=

(

1 F
0 1

) (

1 0

0 0

)

Theorem 3.7. The classification problem (in the case of projective invariants) is actually
equivalent to the problem of characterization of all possible decompositions of finitely gen-
eratedR-modulesU andX on the form

U = P0 ⊕ P1

X = P1 ⊕ P2 ⊕ · · · ⊕ Ps

whereP0 represents a solution forker(B) and Pi represents a solutionNΣ
i /NΣ

i−1. Thus
the only restriction to solve the system of equations is thatPi+1 must be a direct summand
of Pi for all i.

Consequently to give the complete classification of locally Brunovsky linear systems
is needed to know exactly the monoid(Proj(R),⊕) of isomorphism classes of finitely
generatedR-modules with the direct sum as internal operation.

The full description of the monoid(Proj(R),⊕) is a great task. Of course if finitely
generated projectives are free then(Proj(R),⊕) is isomorphic to(N ∪ {0}, +) but in
general this is not the case.

If R = C(K) is the ring of continuous functions defined on a compact topological
spaceK then(Proj(R),⊕) ≡ (Vect(K),⊕) depend, of course, on the topology ofK.
For instance ifK = S1 is the real unit circumference then(Proj(R = C(S1)),⊕) is the
commutative monoid generated by the symbolsR (representing trivial vector bundle) and
P (representing the M̈obius Strip) modulo the relationP ⊕ P = R ⊕ R = R2 (see [13]).
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The unit circle

Now we can describe a method to visit all feedback classes of locally Brunovsky linear
systems when it is fixedR = C(S1) the ring of real continuous functions defined on the unit
circle.

First note that there exist only two isomorphism classes of rankr projectiveR-modules:
Rr, which is the free one; andRr−1 ⊕ P .

Thus we may characterize the feedback class of a locally Brunovsky linear systemΣ
overR by a ”colored” Ferrers diagram: Because(Proj(R),⊕) is the commutative monoid
generated by the symbolsR andP then every ”building-block” is a rank1 projective mod-
ule, and there are two classes depicted by

and

for classesR andP . Because we have the relationP ⊕P = R2, we have the rule ”grey
+ grey = white + white”.

Example 3.8. Let R = C(S1) andΣ be the locally Brunovsky linear system given by

Σ :

R3

ց

B=





















x − 1 y 0
−y x + 1 0
0 0 1
0 0 0
0 0 0





















R5 →

A=





















1 −1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0





















R5

thens = 3 and the invariants are:

NΣ
1 = R ⊕ P

NΣ
2 /NΣ

1
∼= R ⊕ P

NΣ
3 /NΣ

2
∼= R

Thus its colored Ferrers diagram is
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Then locally Brunovsky linear systems over the finitely generated -moduleX of rankn
would be described by a ”colored” Ferrers diagram with exactlyn building blocks (white
or grey) where the following restrictions apply:

• There is at most one grey block on each row (remember: ”grey + grey = white +
white”)

• About the possible state-spaces:

– Either X = Rn and there are an even number of gray blocks in the whole
colored Ferrers diagram.

– Or X = Rn−1 ⊕ P and there are an odd number of gray blocks in the whole
colored Ferrers diagram.

• Thei-th row is at most as long as thei − 1-th row (decreasing ranks in the sequence
of NΣ

i /NΣ
i−1).

• If two rows have the same number of squares (white or grey), then they are equal.
(NeitherRr is a direct summand ofRr−1 ⊕ P nor the converse).

Consequently, as an example, we can list all feedback classes of locally Brunovsky
linear systems over the freeC(S1)-module of rank6:
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In the general case, there is not described yet either a procedure to visit all locally
Brunovsky classes or a way to bound the number of such classes. On theother hand note
that the problem we study above we take no restriction about which is the input moduleU .
For input modules of low rank, the feedback classes decrease dramatically; in the critical
case ofU = R is free of rank1, there exists only one feedback class known as the Canonical
Controller Form.

Further study

The dimension2 case is more complicated because, for instance,Proj(C(S2)) is not
finitely generated as monoid (interested reader can see a full description in[13], exercise
1.1.7).

Of course one can study more topological cases (one-dimensional) fromcontractible
spaces and circles by using algebraic methods as Milnor’s Patching (see [12]). But we are
interested here in point out thatK-theory may give some chance:
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Denote byΛp,q the trivial linear system

Λp,q :
Rp

ց0

Rq →0 Rq

and, for a linear system

Σ :
U

ցB

X →A X

consider theaugmentedlinear system

Σ ⊕ Λp,q :

U ⊕ Rp

ց

(

B 0

0 0

) (

A 0

0 0

)

X ⊕ Rq → X ⊕ Rq

representing, in the free case, the same linear control system (with some blank input
and state variables)

x(t + 1) = Ax(t) + Bu(t)
0 = 0

Of course, systemΣ⊕Λp,q is never reachable ifq > 0, thus it is not locally Brunovsky and
hence not Brunovsky. But the point is the following:

Definition 3.9. Two linear systemsΣ andΣ′ are feedback-a-equivalent if and only if aug-
mented systemsΣ ⊕ Λp,q andΣ′ ⊕ Λp,q are feedback equivalent for somep and some
q.

Of course we have thatFeedback equivalence⇒ feedback-a-equivalence, but the con-
verse doesn’t hold:

Example 3.10. Put R = C(S2) the ring of continuous real functions defined on the unit
sphere immersed inR3 (with usual ortogonal coordinates(x, y, z)). Linear systems

Σ :

R3

ց(x,y,z)

X →(0) X

and

Σ′ :

R3

ց(1,0,0)

X →(0) X
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are both locally Brunovsky and are not feedback equivalent because row (1, 0, 0) may be
completed to a basis ofR3 (ker(B′) is free of rank2) while row (x, y, z) cannot be com-
pleted to a basis ofR3 (Hairy-Ball Theorem).

But, on the other hand, systems

Σ ⊕ Λ1,0 :

R4

ց(x,y,z,0)

X →(0) X

and

Σ′ ⊕ Λ1,0 :

R4

ց(1,0,0,0)

X →(0) X

are easily seen to be feedback equivalent.

As a consequence of the above discussion we have that if we are allowedto add new
blank variables (trivial equations) then feedback equivalence turns toa new notion. In the
case of locally Brunovsky linear systems, the feedback equivalence it isno more ruled by
the isomorphism class of finitely generated projectiveR-modules rather than for isomor-
phism classes of finitely generated projective modules up to finitely generated free direct
summands. This leads to GrothendieckK0(R) group in the case of feedback-a-equivalence
in the same way we deal withProj(R) in the case of feedback equivalence.
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