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Abstract

In this paper we relate the problem of finding all feedbaclss#as of Brunovsky
and locally Brunovsky linear systems defined on a commuativg with combina-
torial problems of visiting respectively all Ferrers andoced Ferrers diagrams of a
fixed size.

On the other hand, in the case of rings of real continuoustime defined on
a compact topological space we point out the topologicabgries related to the
problem. We study the dimensidrcase and comment tledimensional case.
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1 Introduction

Let R be a commutative ring with identity element# 0. A sequential linear control
system is a discrete tim@ (= 7Z) dynamical system following a linear rule (or right hand
side) on the form
x(t+1) = Ax(t)+ Bul(t)
yt) = Cu(t)

wherez(—) : Z — X is the sequence of internal statgé-) : Z — Y is the sequence
of outputs of the system, and—) : Z — U is the sequence of external controls (usually
fixed or designed by the controler).

SetsX (of internal states)Y” (of outputs), and/ (of controls or external inputs) are
R-modules in our context whilemap$: X — X, B : U — X,andC : X — Y are
R-linear maps. We describe the above sequential linear control systeiar $iygtem) by
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using the diagram

U Y
D NP ¢
X -4 X

The classical case is whel = K is either the field of real numbers or the field of
complex numbers and = K", Y = KP, andU = K™ are finite dimensional based
K-vector spaces. In this case, a linear system is given by a triple of matrices

Km KP
D B ¢
K™ _)A K™

There are many subjects in control theory. Some of them may be sumarizethéesd
to reachability” and involves only the left half of above picture; that is, ougpace plays
no rdle. One of that subjects is feedback equivalence. Hence in the smgpats will not
be considered and linear systems are, in this context, reduced to

U
Y NP
X -4 X

For general reading on linear systems over commutative rings the readésrigd to

[1].

Feedback equivalence of linear systems

The algebraic equivalence of linear systems deals with the study of linsemnsy up to
isomorphisms in the input and state modules . But it is more interesting (from tiiko
theoretic side) to allow linear feedback actions on linear systems; that is tvesaye
allowed to design controls as linear functions of the current state F'x. This “closed
loop” is at the very heart of control theory. To be concise:

Linear systems:

U

and

X/ _>A’ X/
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are said to b&eedback Equivalent we can bring one of them into the another by a finite
composition of the followindasic Feedback Actions

1. Isomorphisms) : U — U’ in the input module which transforms

(A,B) — (A, BQ)

2. Isomorphismd® : X — X' in the state module which transforms

(A,B) — (PAP™',PB)

3. Feedback action® : X — U which transforms

(A,B) — (A+ BF,B)

Consequently a general feedback actiéh@, F') brings linear systerx = (A, B) to
system:
(A,B) — (P(A+ BF)P', PBQ)

If two linear systems: = (A, B) andY = (A4’, B’) are feedback equivalent via
(P,Q, F) then linear maps

pr=(B AB .- A7'B).UY — X

and '
9012’ _ ( B AB ... (A/)ile/ ) . (U/)eaz . x/

are equivalent linear maps (in the sense of there exists an isomorphigfi’)®* — U®"
such thatp? = P - ¥ - a). This is because one has an equivalence of ngapand?”
for any basic feedback action:

1. Isomorphisnt in input modules bring$A, B) to (A, BQ) yields the equivalence

Q 0 --- 0
/ 0
o =er | Q
: . .0
0 - 0 Q

2. IsomorphismP in state modules brings4, B) to (PAP~!, PB) yields the equiva-
lence
p; =P}
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3. Feedback actiof' : X — U of states onto inputs brinds!, B) to (A + BF, B) and
consequently one has the equivalence

1 FB F(A+BF)B --- F(A+BF)'B
. . . .

or =er | 1o F(A+ BF)B
: . FB
0o ... 0 1

Therefore linear mapg;- andwiz' are equivalent and fortiori cokernels (and images)
are isomorphic. This gives us our main invariants. To be concise, we graven the
following result:

Lemma 1.1. (cf. [4] Lemma 3) Consider the linear system

U
3 \B
X -4 X

The R-modulesN;* = Im(¢F) and M;® = Cokel(p;) = X/Im(pF) are feedback
invariants, up to isomorphism associated to linear system

Some properties of the invariaRtmodules are directly obtained:

Lemma 1.2. With the above notations the following properties hold:

1. There exists an index> 0 such that:

0=NyGN’ G-~ GNZ | GNS=NZ =

2. Quotient moduleV;: /N> is the kernel of the natural surjective mag> — M,

3. Quotient moduled’* , /N are also feedback invariants associated to sysfem

Proof.- To prove(1) first note that a Cayley-Hamilton Theorem applies on endomor-
phismA : X — X of finitely generated projectiv&-module X (see [11] Theorem IV.17)
and A satisfies a monic polynomial(z) € R[z]. Thus there exists an index= deg(x)
such that4* is a linear combination of, 4, ..., A5~!. Consequentls(AsT1B) C NZ.

Now to conclude the proof dfl ) note that ifN;” = N7% , then it follows thatA(N;) C
N}’ and consequentlyl/ (N;*) C N;” for all j. Hence it follows that N;*) = N7 ; for all

VE
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(2) The natural quotient map/* — M3, sendinge + N;* — x + N1, is obviously
well defined and onto. Its kernel is the module

{e+ N7 1o € Nijy} = Nija /N

To prove(3) consider two feedback equivalent linear systenand>’ and the com-
mutative diagram with exact rows:

0 — Nzal/NiZ - MzE - Mzal — 0
/l / O I / O I /
0 — Nz%—l/NiE - Miz - MEH — 0

where the isomorphisms are those obtained in Lemma 1.1. The first linear map is the
guotient of the restriction of isomorphisi : X — X in the feedback action. Short Five
Lemma implies that this linear map is also an isomorphism O

A natural question is: When does the above set of invariants characteeZeedback
class of a linear system?

Answer is that those invariants are sufficient in the case of reachalde figstems over
a finite dimensional vector space (that is, the Classical Brunovsky'sréhein [2]). For
reader’s convenience we review the notion of reachable linear systeun context:

Definition 1.3. Linear system

U
> NP
X -4 X

is called reachable if there exists an indefthis s is the same above which stabilize the
chain ofNZZ) such that the following equivalent conditions hold:

1. N> = X (not only isomorphic, but equal)

2. M =0

In the general case of commutative rings, the invariants we introducenbasefficient
to state the feedback class of a linear system even for the dimensiem = 1 case: Think
in systems: = ((2), (0)) andX’ = ((2), (1)) definedovel/ = U’ = X = X' =Z.

In fact it is proven in [6] that the class of commutative rings where thosariants do
characterize the feedback classes of reachable linear systems is éxaclyss of fields.
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2 Brunovsky systems and their Ferrer's Diagrams

The linear system is a reachable linear system

R™
Y NP
R™ LA R"

is called of Brunovsky type if it is equivalent to a Brunovsky canonioafr (see [6], [7]).
In the case ofR = K being a field, a Brunovsky linear system is just a reachable linear
system. The same is true for the case of linear systems such that all its itvariariree
defined over commutative ring® such that finitely generated projectivé modules are
free (see [7]).

The key is that, in the case of reachable linear systems over a field or, in ttee mo
general framework of projective-free rings, if all tiemodulesN>, /N> are free then
they are really a complete set of invariants verifying that

X=N@®N;/N°@---® N°/NZ

Let us denote by:* the dimension of the fre®-moduleN;*/N:* | in the Brunovsky case.
It follows that

> & =n=dmx
i>1
On the other hand, the set
&85, 7

characterizes the feedback class of system
Moreover, because of one has the splitting surjective map

Z: N'L'Z/Nizil - NErl/NiZ
T+ NEI — Az + NiZ
it follows that the sequence ¢f is decreasing; that i > gzal for all 4.

Thus, once we have fixed a projective-free riRgand the dimensions: andn, all
feedback classes of linear systems of the form

R™
DI NP
R" _>A R"

are in one-to-one correspondence with the set of partitions of integedecreasing
sequences, or, equivalently or by all the Ferrers diagrams of integer
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For example, if we set = 6 we have the following Ferrers diagrams visited following
the reverse lexicographical order (see [9]):

[(TTTTT] [ T[] [ ] [ 1]

Consequently, the description of all types of Brunovsky linear systemsaogommu-
tative ring R does not depend on the rirg but on the dimension of free state module
X. In fact, there are exactly(n) Brunovsky linear systems over a free modile= R",
wherep(n) is the number of partitions of integerinto decreasing integers.

The study of the number of partitions goes back to L. Euler, who introdirceide
XVIII century the main tools and seminal results. However,) is easily obtained for
small values of:.

n (123|456 |7 |8]9(10/11|12| 13| 14 | 15
pn)|1]2]|3|5|7|11|15|22|30|42|56|77|101| 135|176

For large values of. we may estimate(n) by analytic methods (see [9] for details).

To conclude, note that we didn’t say a word on the dimensidi of the above discus-
sion. BecauséV;” is an homomorphic image &f and (in the particular case of Brunovsky
systems) it is also a direct summand(of it follows that the first row of Ferrers diagram
of ¥ (the dimension ofV;*) needs to be lower than the dimensionlaf Consequently if
m is fixed then the number of feedback classes of Brunovsky systems ist in,fén), the
number of decreasing partitions ofinto pieces lower tham. Note that the extremal case
m = 1yieldsp;(n) = 1 representing the Canonical Controller Form.

3 Locally Brunovsky systems and coloured Ferrer’s Diagrams

Let R be a commutative rind/ and X finitely generated projectiv&-modules and

U
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alinear system. A ring homomorphisfn R — S defines an additive funct@®roj(R) —
Proj(S) from finitely generated projectiv®-modules to finitely generated projectige
modules sending’ to P @5 S (see [15] for example). Thus a new linear system

U®grS
) gt
X®rsS —A81 X ®rS

arises as extension of scalars fréiro S via f.

If U andX are based free modules (hent@ndB are given by its matrices in the fixed
bases) and = R/I wherel is a ideal ofR andf is the standard quotient map— 7, then
systemf*(X) is just given by residual matrice$ and B modulo!.

If K is a compact topological space afd= C(K) is the ring of real continuous
functions defined ork” then the map? — mp = {f € C(K) : f(P) = 0} is an home-
omophism fromK’ to the topological space M&R) (the maximal spectrum aR together
with the Zariski topology). Hence the ring homomorphi&in— R/m is the evaluation of
functions atP and provides the puntual study of systems.

On the other hand, if we consider the ring homomorphigm: R, we have the local-
ization of systems and the local study. The interested reader is refeffgddo detais.

Definition 3.1. Let

U
> \B
X -4 X

be a linear system ang@ a property of linear systems (i.e. being reachable, Brunovsky,
controllable, pole-assignable,...). We say thais locally-P (over R) if and only if all
localizations

Yp \,B®1

are’P over R, for all prime idealp of R.
A propertyP of linear systems is local if one has

P < Locally-P

Note that because @f and X are finitely generated projectiv@-modules it follows
that their localizations at: U ® R, andX ® R, are free of finite dimension.
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One the other hand, note that reachability is a local property of lineamsysiecause
it is stated in terms of surjectivity of a linear map. Some other properties ar@cuit
Controllability, Pole-Assignability.

Next we deal with the locally Brunovsky property: A locally-Brunovskyelam sys-
tem verifies that the localizatior}s, are Brunovsky. Hence the invariaer" are free.

Because tensor product is right exact functor it follows t‘m@?" ~ M* ® R, and the
result:

Lemma 3.2. A locally Brunovsky linear systebi has locally free (i.e. projective) invari-
ants M.

The converse is also true and a locally Brunovsky linear sy3tesma reachable linear
system such tha®-modules)M > are projective for alki.

Of course if commutative ringe verifies that finitely generated projectivémodules
are free (for example i is afield, if R is local, or the ring of rational intege? or a poly-
nomial ringk[ty, ..., t,] wherek is a field, ...) then Brunovsky = Locally Brunovsky. But,
in general, we have Brunovsky Locally Brunovsky and not the converse (see bellow).

Note that if K is a compact topological space and we consider theking C(K) of
real valued continuous functions defined@rihen finitely generated projectivé-modules
are in one to one correspondence with vector bundlesEv@wan’s Theorem [14]). Thus
finitely generated?-modules (and a fortiori locally Brunovsky linear systems) are charac-
terized by the topological properties Af.

ConsiderK = [0, 1] be the unit closed interval i or, in general K be a compact
contractible space. Because of every vector bundle is trivial it folloatsfihitely generated
C(K)-modules are free and therefore every locally Brunovsky linear systerC(K) is
of Brunovsky type.

On the other hand, the converse does not hold if the compact space adntiisial
vector bundles: PUK = {(z,y) € R? : 22 + y? — 1 = 0} = S! the unit sphere ifR?, and
the linear system (cf. [3])

C(Sl)2

(1 —1)
c(s? — <1 L) ety

This linear system is locally of Brunovsky type. Localizatibp of ¥ at any point

(maximal idealp of C(S!)) gives us a linear system with Ferrers diagr@fr“h = 522" =1;
that is:
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But howeverX. is not Brunovsky becaus&/;” is a non-free rank projectiveC(S*)-
module.

How can we study the feedback classes of locally Brunovsky linearragStéext we
introduce our main result which is based in the splitting properties of progestadules.

Theorem 3.3. Let R be a commutative ring and léf, X be two finitely generated-
modules. Consider the linear systéhgiven by:

U

If M7 is projective then:
1. X 2 N @ MP andU = N @ ker(B)

2. Systent is feedback equivalent to linear system:

N @ ker(B)

IR 00 0 0
N ( az1 a2 )
N o MY — N @ MY

Proof.- Part(1) follows from the exact splitting natural sequendé is projective):
0 — le —inclusion X —quotient Mlz — 0

On the other hand, the second isomorphism follows directly of the exact gplsitin
quence
0 — ker(B) —inclusion U —p le — 0

To prove(2) we need only to consider that, according to decompositiofis)iwe have
that B is given by the matrix of linear maps

o-(33)
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wherel is the identity linear map an@lis the zero linear map. Thus the feedback action

[ —a11 —a12
= o)

bringsX to ¥’ O

Definition 3.4. With the above notations we defin€2) = (ag2, as1) as the linear system:

NY
6(2): N\ as
Lemma 3.5. Suppose that linear system
U
Y NP
X =4 X

is locally of Brunovsky type; that is; is reachable and all invariant module®/ > are
projective. Then the following properties hold:

)

1. M, (%) o My, consequently one can obtaiA(X) = §(6(%))

2. Ingeneral M) = ME |

3. We have a finite sequence of decreasing systé(hy in the sense of their state
spaces are isomorphic t/;*.

5(% 5(E) ~v Ar03(E 52(%
4. NiJ(rl)/Ni( ):Ni ( )/Nifg :

5. U = Ny @ ker(B)
6. X =D;>; NP/NZ,

Proof.- To prove(1) and(2) just write down and compare matrices of linear maps
gof(z) andyy ;. Remain items follows directly by standard calculations on the direct sum
decomposition of involved modules O]
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Consequently, for a reachable linear systéwith all invariant R-modulesM;> being
projective, the feedback class characterizes, up to isomorphism thdyfoeeeratedr-
modules

ker(B)
Ny = Im(B)
NY/NP = Im(B, AB)/Im(B)
NZ /NP = Im(B,AB,.., AiB)/Im(B, AB, ., A" B)

The converse is also true; that is, above data characterizes the dkeibdss ofy:

Lemma 3.6. If §(X) and§(X’) are feedback equivalent arkdr(B) andker(B’) are iso-
morphic then: andX’ are feedback equivalent.

Proof.- Suppose that(X) = (a2, a21) ando(X’) = (a),, ab,) are feedback equivalent
by a basic feedback action of type state-space isomorphism. Then

/ -1 _/
a22 — PCLZQP a21 — Pa21

(2 )=(o 2) (e ) (o )
(o0)=(o7)(o0)

Now suppose thai(X) = (a2, a21) andd(X’) = (al,, dly,) are feedback equivalent
by a basic feedback action of type input-space isomorphism. Then

Consequently

and

/ /
Agg = G22G9] = ang

()= (% V)0 8 )(0 )
Coo)=(% )G o) (8 7)

Consequently

and
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Now suppose thaf(X) = (a2, a21) andd(X’) = (al,, dly,) are feedback equivalent
by a basic feedback action of type feddback. Then

/ !/
a22 - a22 + a21Fa21 - a21

Consequently

0 o\ (1 -F 0 o0 L F
a/21 CL/22 - 0 1 as1 a2 0 1
n 10 Fasy Fao  F' — Fagy
01 0 0
10\ (1F 10
oo/ \01 00

Theorem 3.7. The classification problem (in the case of projective invariants) is actually
equivalent to the problem of characterization of all possible decompositibfinitely gen-
erated R-moduleg’ and X on the form

and

O]

U = FPyd P,
X = P&P,® -] PFs

where P represents a solution fdter(B) and P; represents a solutiot.* /N> ;. Thus
the only restriction to solve the system of equations is fat must be a direct summand
of P; for all 3.

Consequently to give the complete classification of locally Brunovsky lingstess
is needed to know exactly the monaifroj(R), ) of isomorphism classes of finitely
generated?-modules with the direct sum as internal operation.

The full description of the monoi@Proj(R), ®) is a great task. Of course if finitely
generated projectives are free th@roj(R), ®) is isomorphic to(N U {0}, +) but in
general this is not the case.

If R = C(K) is the ring of continuous functions defined on a compact topological
spaceK then(Proj(R),®) = (Vect(K),®) depend, of course, on the topology &t
For instance ifk = S! is the real unit circumference théProj(R = C(S')), @) is the
commutative monoid generated by the symh®l§epresenting trivial vector bundle) and
P (representing the Bbius Strip) modulo the relatioR & P = R ® R = R? (see [13)]).
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The unit circle

Now we can describe a method to visit all feedback classes of locally Bsugdinear
systems when itis fixe& = C(S') the ring of real continuous functions defined on the unit
circle.

First note that there exist only two isomorphism classes of rgrkjective R-modules:
R, which is the free one; and"~! @ P.

Thus we may characterize the feedback class of a locally Brunovsky kystem>:
over R by a "colored” Ferrers diagram: Becauderoj(R), ®) is the commutative monoid
generated by the symbaolsand P then every "building-block” is a rank projective mod-
ule, and there are two classes depicted by

w

for classes? and P. Because we have the relatiéht P = R?, we have the rule "grey
+ grey = white + white”.

Example 3.8. Let R = C(S!) andX: be the locally Brunovsky linear system given by

R3
r—1 Y 0
-y x+1 0
B= 0 0 1
0 0 0
D N 0 0 0
1 -1 0 0 O
1 1 000
A= 0O 0 O 0O O
0 0 1 0O
R 0O 0 01 0 RS
thens = 3 and the invariants are:
N = RoP
Ny/Ny = RoP
NP/Ny = R

Thus its colored Ferrers diagram is
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Then locally Brunovsky linear systems over the finitely generated -moduérankn
would be described by a "colored” Ferrers diagram with exaethuilding blocks (white
or grey) where the following restrictions apply:

e There is at most one grey block on each row (remember: "grey + grehite w
white”)

e About the possible state-spaces:

— Either X = R"™ and there are an even number of gray blocks in the whole
colored Ferrers diagram.

— Or X = R ! @ P and there are an odd number of gray blocks in the whole
colored Ferrers diagram.

e Thei-th row is at most as long as tlie- 1-th row (decreasing ranks in the sequence
of N*/NZ ).

e If two rows have the same number of squares (white or grey), then tieegcaral.
(NeitherR" is a direct summand d®"~! @ P nor the converse).

Consequently, as an example, we can list all feedback classes of locatyp\Bky
linear systems over the frégS')-module of rank6:
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CHERNEL
S
| |

o=
v

In the general case, there is not described yet either a proceduisittallvlocally
Brunovsky classes or a way to bound the number of such classes. ©thdrehand note
that the problem we study above we take no restriction about which is thermuuleU .

For input modules of low rank, the feedback classes decrease drdiyiaticéhe critical
case o/ = Ris free of rankl, there exists only one feedback class known as the Canonical
Controller Form.

Further study

The dimensior2 case is more complicated because, for insta®ej(C(S?)) is not
finitely generated as monoid (interested reader can see a full descrip{ib8]jrexercise
1.1.7).

Of course one can study more topological cases (one-dimensional)cfrotractible
spaces and circles by using algebraic methods as Milnor's Patchingl@geBut we are
interested here in point out that-theory may give some chance:
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Denote byAP? the trivial linear system

RP
AP - 0
R1 —0 Ra

and, for a linear system

U
3 \B
X -4 X

consider theaugmentedinear system

U@ RP

B 0 A0
p)q-
@ AP \(0 0> (0 0>
X @ RY — X @ RY

representing, in the free case, the same linear control system (with sonkeitybait
and state variables)
x(t+1) = Az(t) + Bu(t)
0 = 0
Of course, systex @ AP¢ is never reachable if > 0, thus it is not locally Brunovsky and
hence not Brunovsky. But the point is the following:

Definition 3.9. Two linear system& andY are feedback-equivalent if and only if aug-
mented system& & AP? and Y & AP? are feedback equivalent for sompeand some
q.

Of course we have th&eedback equivalence- feedback-a-equivalencbut the con-
verse doesn’t hold:

Example 3.10. Put R = C(S?) the ring of continuous real functions defined on the unit
sphere immersed iR? (with usual ortogonal coordinatés, v, 2)). Linear systems

R3
e \ (&2

x -0 X

and

R3
E/ . \(1,0,0)
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are both locally Brunovsky and are not feedback equivalent becaws(1,0,0) may be
completed to a basis dt® (ker(B’) is free of rank2) while row (z,y, z) cannot be com-
pleted to a basis ak? (Hairy-Ball Theorem).

But, on the other hand, systems

R4
Yo Al,O . \(x,y,z,O)

and

R4
Y @ AL \(1,0,0,0)
x -0 X

are easily seen to be feedback equivalent.

As a consequence of the above discussion we have that if we are aliovaed new
blank variables (trivial equations) then feedback equivalence turasiawv notion. In the
case of locally Brunovsky linear systems, the feedback equivalencadtrisore ruled by
the isomorphism class of finitely generated projecti«enodules rather than for isomor-
phism classes of finitely generated projective modules up to finitely geddrate direct
summands. This leads to Grothendid¢( R) group in the case of feedbaakequivalence
in the same way we deal witBroj(R) in the case of feedback equivalence.
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