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Abstract

Control and design of stationary localized patterns is
studied in large random bistable networks. The forma-
tion mechanism of these patterns is controlled by a neg-
ative feedback which depends on the total activation of
the system. The active nodes in such a pattern form a
subnetwork, whose size decreases as the feedback in-
tensity is increased following a power law.
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1 Introduction

Control and design of patterns is an essential investi-
gation topic in complex systems [1; 2]. Global feed-
back control schemes serve as standard methods used
for this purpose. Typically, global feedback requires a
common control signal, generated by the entire system
and applied back to all its elements. Various feedback
schemes have been used in theoretical studies [3; 4]
and in the experiments [5; 6; 7], either for stabilizing
existing unstable patterns or for inducing new kinds of
patterns that do not existing in the absence of feedback.

Self-organization phenomena, such as epidemic
spreading [8], clustering [9] and synchronization [10]
of oscillators, Turing patterns [11; 12] or traveling
and pinned fronts [13; 14; 15], have been studied in
reaction-diffusion systems organized in complex net-
works. Moreover, some effects of control by global
feedbacks have been previously investigated for net-
works systems. It has been demonstrated, for exam-
ple, that turbulence in oscillator networks can be sup-
pressed [16] and hysteresis of Turing network patterns
can be prevented [17] when such feedbacks are applied.
Moreover the deliberate design of stationary localized
patterns have been studied in bistable networks [18].

Here we show that feedback control may also sup-
press spreading of activation in networks of bistable

elements, and leads to the formation of localized sta-
tionary patterns. We undertake a systematic numeri-
cal simulations for random Erdos-Rényi and scale-free
networks and we present the statistical properties of the
developed stationary patterns.

2 Complex bistable networks and negative feed-
back
A simple bistable system organized on a complex net-
work, is given by the one-component equation

N
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where u; is the amount of activator in network node
and f(u;, h) describes the bistable dynamics of the ac-
tivator in the nodes ¢ ( = 1,..., N). The summation
term in Eq. (1) takes into account diffusive coupling
between the nodes. Parameter D characterizes the rate
of diffusive transport of the activator over the network
links. The connectivity structure of the network can be
described in terms of its adjacency matrix whose ele-
ments are A;; = 1, if there is a link connecting the
nodes ¢ and 7, and A;; = 0 otherwise. Here we con-
sider processes in bidirected networks, where the ad-
jacency matrix is symmetric (4;; = Aj;). The local
bistable dynamics is described by the cubic polynomial

flu,h) = u(h —u)(u—a), 2)

where f(u, k) has one unstable (u"™" = h) and two
stable (uS” = 0 and u$" = a) fixed points; 0 < h <
a. Depending on the particular context, the activator
variable v may represent concentration of a chemical or
biological species which amplifies (i.e auto-catalyzes)
its own production.



Figure 1. Stationary patterns in a scale-free network with (k) =6
and N = 200 fora) p = 0.001,b) p = 0.002, c) p =
0.003, d) p = 0.004, ¢) o = 0.006 and f) & = 0.05.

The square indicates the node at which the activation was initially

applied. White nodes correspond to inactive states whereas black
nodes represent the active ones. The red links connect the active
nodes. Other parameters are hg = 0.1, = 1 and D = 0.02.

In continuous bistable media stationary localized pat-
terns can be established if a global coupling is intro-
duced, so that the parameter h depends on the total
activation of the system. In the same fashion we can
control the formation of stationary localized patterns
in the networks by introducing a global negative feed-
back. We assuming that the parameter i depends on
the total concentration of the activator » on the network
according to the formula

h = ho + u(S — So), 3)

where hg is a positive constant, . > 0 is the intensity
of the feedback, S = Zf\iluz is the total activation
in the networks and Sy is a parameter defining the size
of localized patterns. In our simulations it was taken
equal to the number of the nodes which were initially
activated. Hence, the control parameter i depends now
on the total activation. It increases when more nodes
are activated, so that a negative feedback is realized.
Effects of global negative feedback have been numer-
ically studied for large Erdos-Rényi and scale-free net-
works. Figure 1 presents an illustrative example of the
deliberate design of stationary patterns when the sys-
tem (1) is subjected to the control with the feedback
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Figure 2. Dependence of the number of activated nodes on the feed-
back intensity ¢ for random a) Erdos-Rényi and b) scale-free net-
works with (k) = 6 and N = 2000 nodes. Other parameters are
ho=0.1,a =1and D = 0.02.

signal described in Eq. (3). The activation that is ap-
plied initially to one node (marked by a square in Fig-
ure 1) starts to spread. This results in a growing sub-
network of activated nodes which is accombined with
an increase of the negative feedback. Consequently, the
control parameter h increases with the size of the sub-
network making the activation more difficult. As a re-
sult, the growth of the active subnetwork slows down
and finally stops. Therefore, a stationary pattern, rep-
resenting a small subnetwork of activated nodes em-
bedded in the entire network (see Figure 1) becomes
formed. By retaining only the nodes with high activa-
tion level u > 0.8, active subnetworks can be identi-
fied. A sequence of such subnetworks, obtained under
an increase of the global feedback intensity, is shown
in Figure 1 for a scale-free network.

Our statistical analysis has revealed that, in both
Erdos-Rényi and scale-free networks networks, the av-
erage size of active subnetworks decreases as the feed-
back becomes stronger following, approximately, the
power law S o pu~! (see Figure2). This power-law
breaks for sufficiently weak feedback, where the entire
network becomes activated (cf. Figurel(a)). Interest-
ingly, the numerically found power law has the expo-
nent —1. The same exponent can be derived by means
of some simple analytical calculations.

Let us assume that the size S of a stationary pattern
grows like,

D

BT “

S = c(h)

where c(h) is the propagation velocity of a bistable
front without feedback control. When a stationary pat-
tern is established, its size should be constant in time
and thus S = 0, namely

b
T 5—5,
D

clho + pu(S = So)] = -5 ®)

c(h)



Assuming a linear function for the c(h) given by
¢(h) = ¢p — kh, where k denotes the degree of a node,
we find that the intensity of the feedback can be given
by

- Co—k‘ho . D (6)
(S =50 K(S—S0)?

When S is large, the later equation can take the form
p o 1/(S — Sp). Then by taking into account that
(u) x (S — Sp) we conclude on the relation

(uy oc ™, (7)

which was also found in the numerical simulations
for both, the Erdos-Rényi and scale-free networks net-
works.

3 Conclusion

We have analyzed some effects of a global nega-
tive feedback control scheme on the pattern formation
mechanisms of bistable networks. In large random net-
works feedback-induced stationary patterns are local-
ized on subnetworks of the entire system. The struc-
ture and the size of such subnetworks can be controlled
by tuning the feedback intensity. Their size decreases
as the feedback becomes stronger and follows a power
law distribution with the exponent —1. Simple analyti-
cal derivation have revealed the origins of this particu-
lar exponent.
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