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Abstract
The paper addresses a parameter identification prob-

lem for linear discrete-time stochastic systems with un-
known exogenous inputs. Such systems are considered
when solving practical problems related to the mea-
surements processing in the case when it is impossi-
ble to do any assumptions about the evolution of un-
known input signal or its statistical characteristics that
can change over time. We consider a class of discrete-
time linear stochastic systems with unknown exogenous
inputs, where an additional source of a priori uncer-
tainty of the system model is introduced, namely, the
unknown parameter, on the elements of which the sys-
tem model matrices can depend. This formulation of the
parameter identification problem under the conditions
of unknown inputs and the presence of random noises
describes a high degree of uncertainty of a discrete-
time linear stochastic system. We propose a novel so-
lution to this problem based on the construction of a
new instrumental identification criterion. Minimization
of this criterion allows for evaluating the unknown sys-
tem model parameters simultaneously with the estimat-
ing of the state vector and unknown exogenous inputs of
the system. Numerical experiments confirm the validity
and efficiency of the proposed parameter identification
method.

Key words
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1 Introduction
Methods for simultaneous input signal and state vector

estimation for linear stochastic systems have attracted a
lot of attention in recent decades due to their practical ap-
plications in modern research areas such as faults detec-
tion and isolation, estimating geophysical processes in
case when it is impossible to do any assumptions about
the evolution of unknown input signal or its statistical
characteristics that can change over time.

For continuous-time systems necessary and sufficient
conditions for the existence of an optimal system state
estimate are known from [Kudva et al., 1980; Hou and
Müller, 1992; Darouach et al., 1994]. Some algorithms
for recovering unknown inputs were investigated in [Hou
and Patton, 1998; Xiong and Saif, 2003]. In early pa-
pers [Darouach et al., 1994], construction of the ob-
server and conditions for existence and stability were
obtained for the class of deterministic systems. Also,
several approaches have been developed for stochastic
systems. The most common early approach is to treat
the unknown input as a random process with a known
characteristics (for example, the mean and covariance
are known) or as a constant bias. This approach was in-
troduced by Friedland [Friedland, 1969] and further dis-
cussed in [Ignagni, 1990].

For the class of discrete-time systems, the earliest ap-
proaches were based on the inclusion of an unknown
input into the state vector of the stochastic system. It
was assumed that the evolution model of the input sig-
nal is known. In this case, the well-known extended
Kalman filter was used to solve the problem. To re-
duce the computational cost of the extended filter, Fried-
land [Friedland, 1969] proposed a two-stage Kalman fil-
ter in which the state estimate and the unknown input
are separated. Although both methods are successfully
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used in many applications, they require knowledge of a
evolution model describing unknown inputs.

Another approach to solving the problem was pro-
posed by Kitanidis [Kitanidis, 1987], who developed an
optimal recurrent filter for estimating the state vector,
which is based on the assumption that a priori infor-
mation about unknown inputs is not available. His re-
sult was extended in [Darouach and Zasadzinski, 1997]
where the authors established stability and convergence
conditions, and also developed a new method for filter-
ing the system state vector. Further, Hsieh [Hsieh, 2000]
established a connection between the two-stage Fried-
land filter and the Kitanidis filter, showing that the Ki-
tanidis result can be obtained by making the two-stage
filter independent of the basic input model. In addition,
his method makes it possible to compute estimates of the
unknown input. However, the optimality of this estimate
has not been proven.

S. Gillijns and B. De Moor [Gillijns and De Moor,
2007a] made a great contribution to the development of
the theory for discrete-time filtering in stochastic sys-
tems with unknown inputs. They extended the results
obtained in [Kitanidis, 1987; Darouach and Zasadzinski,
1997] and proposed a recurrent filtering algorithm for
the simultaneous estimation of the system state and un-
known input vectors. Moreover, the obtained estimates
have the minimum error variance. They also proved the
optimality of computed estimates.

The next step was to solve the discrete-time filter-
ing problem with unknown inputs included both in the
state and sensor equations. Such a problem arises when
the model contains systematic measurement errors and
the uncertainty of the model itself, caused by unknown
disturbances and/or due to the unmodeled dynamics of
the process under investigation. A rigorous and simple
method for estimating the state vector in the presence
of unknown inputs was developed in [Hou and Müller,
1994; Hou and Patton, 1998]. The proposed approach
was to first construct an equivalent system that is decou-
pled from the unknown inputs and then compute an un-
biased estimate with a minimum error variance for that
equivalent system.

Another approach is to parameterize the filter equa-
tions and then calculate the optimal parameter estimates
by minimizing the trace of the covariance matrix of the
estimation error. An optimal filter of this type was first
developed by Kitanidis [Kitanidis, 1987]. His solution
is limited to linear systems without direct transfer of un-
known input to the system output. In addition, this so-
lution does not allow for obtaining an estimate of the
unknown input signal. Gillijns and De Moor [Gillijns
and De Moor, 2007b] proposed a solution to the problem
of joint estimation of the unknown input vector and the
state vector for linear systems with direct feedthrough.
Using linear unbiased minimum error variance estima-
tor, they developed a three-stage recurrent filter in which
the estimate of the system state vector and the unknown
input signal are correlated. The input vector estimation

is based on the least squares method developed by Gilli-
jns and De Moor, while the state vector estimation prob-
lem is solved using the method developed by Kitanidis.
In [Yong et al., 2013] authors presented a variation of an
optimal filter that simultaneously estimates the states and
unknown inputs providing the best linear unbiased esti-
mate (BLUE) of the unknown input for linear discrete-
time stochastic systems with direct feedthrough. They
argued that in contrast to previous filters the information
about the unknown input can be obtained from the cur-
rent time step as well as the previous one, making it pos-
sible to estimate the unknown in different ways. A solu-
tion to the problem of simultaneous estimation of an un-
known input signal and state vector for the linear system
with a rank-deficient distribution matrix was proposed in
[Hua et al., 2021]. The problem of unknown input esti-
mation for systems which do not satisfy the matching,
minimum phase, and detectability conditions was stud-
ied in [Zhirabok et al., 2023]. The suggested method is
based on the reduced order model of the original system
insensitive to the disturbance.

In recent years, research on estimating the state vector
of a system with an unknown input has also focused on
nonlinear systems. Based on the extended Kalman filter
structure, some new filters have been developed that es-
timate the state of a nonlinear system [Xiao et al., 2018;
Varshney et al., 2019].

In all above mentioned methods, it was assumed that
all the system matrices are perfectly known for the opti-
mal filter design. Thus, they do not solve the parameter
identification problem. To the best of our knowledge,
there is a small number of existing works on identifica-
tion of stochastic systems with unknown exogenous in-
puts (see [Lan et al., 2013; Yu and Chakravorty, 2016;
Kong et al., 2023], for example).

In this paper, we consider a class of discrete-time linear
stochastic systems with unknown exogenous inputs, in
which an additional source of a priori uncertainty of the
system model is introduced, namely, the unknown sys-
tem model parameter θ ∈ Rp, on the elements of which
the system matrices can depend. This formulation of the
parameter identification problem, under the condition of
unknown inputs and the presence of random noises, de-
scribes a high degree of uncertainty of a discrete-time
linear stochastic system. We propose a novel solution to
the problem of parameter identification based on the con-
struction of the new instrumental identification criterion.
Minimization of this criterion allows for evaluating the
unknown system model parameter simultaneously with
the estimating of the state vector and unknown exoge-
nous input.

It should be noticed that the problem considered in this
paper is also related to the unknown input observer de-
sign problem which is well-known and has a long history
in research and applications [Tranninger et al., 2023].
However, its significant differences from the parameter
identification problem, which we solve in this paper, are
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as follows. Firstly, we consider a discrete-time linear
time invariant (LTI) stochastic system in which the sys-
tem matrices depend on an unknown parameter. In al-
most all papers devoted to unknown input observer de-
sign, the system matrices are assumed to be completely
known. Thus, the problem of parameter identification
is not solved there. Secondly, we assume that available
measurements of the system state vector contain addi-
tive noises, whereas the observer design problem with
unknown input considers unnoised measurements as a
rule.

The results obtained in our paper can be applied to
solving various practical problems related to the parame-
ter identification of mathematical models represented by
the discrete-time stochastic LTI systems in state space,
based on the output-only measurements data. Exam-
ples of such applications include, but are not limited to,
the tracking problem of a remotely piloted aircraft [He
and Liu, 2023], the problem of the position and velocity
tracking of multiple vehicles [Yong et al., 2016], the fault
identification and state estimation problem when the sys-
tem dynamics is afflicted by disturbances or faults [Yong
et al., 2014], the heat conduction problem [Gillijns and
De Moor, 2007c], the estimation, detection and control
problems of the DC and step motor systems [Darouach et
al., 2003; Yong et al., 2013; Furtat et al., 2023], parame-
ter estimation problems of discrete-time models of the
Van der Pol oscillator [Palanthandalam-Madapusi and
Bernstein, 2007], the linearized model of a simplified
longitudinal flight control system [Hmida et al., 2010],
the spring-mass-damper system [Teymouri et al., 2020].

The remainder of the paper has the following struc-
ture. Section 2 provides basic definitions associated with
the optimal filtering algorithm of simultaneous input and
state estimation for linear discrete-time stochastic sys-
tems with unknown inputs. Also, the problem of pa-
rameter identification is stated and described. Section 3
contains the main results of the paper — the new instru-
mental identification criterion (IIC) and the system state
sensitivity equations for evaluation of the IIC gradient.

Section 4 demonstrates how the newly proposed instru-
mental identification criterion and method for calcula-
tion the IIC gradient can be applied for solving the pa-
rameter identification problem of the considered stochas-
tic system model with unknown periodic input signal.
The comparison results of four different methods for
minimizing the proposed identification criterion are pre-
sented. Section 5 concludes the paper.

2 Preliminaries and Problem Statement
Consider the discrete-time linear time invariant (LTI)

stochastic system{
xk = Fxk−1 +Buk−1 +Gwk,

zk = Hxk + vk, k = 1, 2, . . . , N
(1)

where xk ∈ Rn is the system state vector; uk ∈ Rr

is an unknown exogenous input; zk ∈ Rm is the mea-

surements vector; matrices F ∈ Rn×n; B ∈ Rn×r;
G ∈ Rn×q; H ∈ Rm×n; N is the number of measure-
ments; initial state x0 ∼ N (x̄0,Π0), additive model dis-
turbance wk ∈ Rq ∼ N (0, Q) and measurement noise
vk ∈ Rm ∼ N (0, R) are mutually independent. Co-
variance matrices Q and R of wk and vk are positive
semidefinite.

In this paper, we consider system (1) in the case when
exogenous input uk is completely unknown, i. e., there is
no prior knowledge about the dynamics or statistic char-
acteristics of uk.

It is worth to note that in case input signal uk is known,
is zero or is a zero-mean white random vector with
known covariance matrix, the optimal discrete-time fil-
tering problem for the system (1) reduces to the Kalman
filtering problem [Grewal and Andrews, 2015]. If uk is
the deterministic input and its dynamics is known, then
suboptimal estimates of uk and xk can be obtained us-
ing a well-known extended Kalman filter [Anderson and
Moore, 1979].

The problem of simultaneous input and state esti-
mation for linear stochastic systems with completely
unknown exogenous input was solved in [Kitanidis,
1987; Gillijns and De Moor, 2007a]. The derivation
of corresponding optimal filters was based on unbiased
minimum-variance estimation. In [Gillijns et al., 2007],
this problem was investigated from the viewpoint of re-
cursive least-squares estimation.

Throughout the paper, we assume that rankH = n
and the following sufficient condition for the existence of
an unbiased state estimator is satisfied [Kitanidis, 1987;
Darouach and Zasadzinski, 1997]

rankHB = rankB = r. (2)

Assumption (2) implies n ≥ r and m ≥ r.

2.1 The Algorithm of Simultaneous Input and State
Estimation for Linear Discrete-Time Stochastic
Systems with Unknown Exogenous Inputs

The optimal filtering algorithm of simultaneous input
and state estimation for linear discrete-time stochastic
systems consists of three sequential steps repeated for
each measurement zk (k = 1, . . . , N ):

1) time update of the state vector estimate;
2) input signal estimation;
3) measurement update of the state vector estimate.

In [Gillijns and De Moor, 2007a], the authors sug-
gested two variants of the filtering algorithm, in which
steps 1 and 2 are the same, but step 3 is different. The
first variant of the algorithm allows for computing an
MVU estimate (MVU — minimum-variance unbiased)
of the input vector ûk−1 at step 2 and an unbiased es-
timate of the state vector x̂k at step 3. In the second
version of the algorithm at step 3, due to more complex
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calculations, an MVU estimate x̂k of the state vector xk

is obtained.
Let In denote the identity matrix of size n. Then the

filtering algorithm for the system (1) can be written as
follows.

Algorithm 1. Gillijns and De Moor algorithm (GDM).
Initialization. P0 = Π0, x̂0 = x̄0.
For k = 1, 2, . . . , N do

I. Time Update step. Find a priori estimation error co-
variance matrix Pk|k−1 and a priori estimate of the state
vector x̂k|k−1 as follows:

x̂k|k−1 = Fx̂k−1, (3)

Pk|k−1 = FPk−1F
T +GQGT . (4)

II. Input Estimation step. Find an unknown input es-
timate ûk−1 as follows:

R̃k = HPk|k−1H
T +R, (5)

Dk−1 =
(
BTHT R̃−1

k HB
)−1

, (6)

Mk = Dk−1B
THT R̃−1

k = (HB)+, (7)
ûk−1 = Mk(zk −Hx̂k|k−1). (8)

III. Measurement Update step. Using the a priori
estimates Pk|k−1, x̂k|k−1 and input estimate ûk−1, find
a posteriori values Pk and x̂k as follows:

Kk = Pk|k−1H
T R̃−1

k , (9)
x̂∗
k = x̂k|k−1 +Bûk−1, (10)

P ∗
k = (In −KkH)Pk|k−1, (11)
x̂k = x̂∗

k +Kk(zk −Hx̂∗
k), (12)

Pk = P ∗
k + (In −KkH)BDk−1B

T

× (In −KkH)T . (13)

End

2.2 Parameter Identification Problem
Now suppose that the matrices F , G, Q, R defining

system model (1) are known up to the value of parameter
θ ∈ Rp, i. e.,{

xk = F (θ)xk−1 +Buk−1 +G(θ)wk,

zk = Hxk + vk, k = 1, 2, . . . , N
(14)

Let us state the parameter identification problem of
system model (1) by available measurements ZN

1 =
{z1, . . . , zk, . . . , zN}.

Consider a process of discrete-time filtering provid-
ing by Algorithm 1. The estimation error ek(θ) =
xk − x̂k(θ) will depend on the value of parameter θ,
which is specified in the filtering algorithm equations.
The minimum value of the error ek(θ) can be obtained
under the condition of a minimum by θ of the original

identification criterion (OIC) in the form of quadratic
functional

Je(θ) = E
{
eTk (θ)ek(θ)

}
. (15)

The problem is that functional (15) is not suitable
for solving the parameter identification problem due to
this functional is not instrumental, i.e., it is not practi-
cally feasible because the estimation errors, ek(θ), are
not available for direct observation. The most popular
approach to solving this problem are MPE (minimum
prediction error) methods [Astrom, 1980; Ljung, 1999]
based on minimizing an identification criterion that de-
pends on the observed measurement residuals. Such cri-
teria include the well-known least squares and maximum
likelihood criteria. Thus, the algorithm of numerical
minimization of the original functional (15) by the pa-
rameter θ is replaced by the algorithm of numerical min-
imization of the selected instrumental criterion, which is
practically feasible.

In this paper, for solving the parameter identification
problem, we use an alternative approach that is the Ac-
tive Principle of Adaptation (APA) [Semushin, 2011a;
Semushin, 2011b; Semushin and Tsyganova, 2013; Se-
mushin, 2014]. The main idea for it is to construct
an auxiliary identification criterion Jε(θ) [Tsyganova,
2011; Semushin and Tsyganova, 2013; Semushin et al.,
2018] which is instrumental because it depends on only
directly observed values and can be minimized with the
use of a known numerical optimization methods.

The APA approach to system adaption within the pa-
rameter uncertainty differs in the fact that it suggests
an indirect state prediction error control in the form of
Jε(θ). It has to satisfy two main requirements:

• it depends on the system observable values only;
• it attains its minimum coincidentally with the OIC

(15).

Both the original and instrumental (auxiliary) identifica-
tion criteria satisfy a relation

Jε(θ) = Je(θ) + Const . (16)

Thus they have one and the same minimizer θ†, i. e.,

θ† = argmin
θ

Je(θ) = argmin
θ

Jε(θ).

3 Main Results
Now, we are ready to present the main result of the pa-

per — the newly constructed instrumental identification
criterion which allows for solving parameter identifica-
tion problem for the class of discrete-time LTI stochastic
systems with unknown exogenous inputs. Thus, we de-
velop the existing APA approach for the systems with
the high level of uncertainty. In all previous related
works [Semushin, 2011a; Semushin, 2011b; Tsyganova,
2011; Semushin and Tsyganova, 2013; Semushin, 2014;
Semushin et al., 2018] it was assumed that exogenous
inputs are known or they are Gaussian white noises.
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3.1 Constructing a New Instrumental Identification
Criterion for Discrete-Time LTI Stochastic Sys-
tems with Unknown Exogenous Inputs

Consider as an OIC

Je(θ) = E
{
eTk (θ)ek(θ)

}
= trE

{
ek(θ)e

T
k (θ)

}
(17)

where ek(θ) = xk − x̂∗
k(θ) is an estimation error of the

state vector xk that is evaluated within the GDM algo-
rithm for a given θ. If θ† = argminJe(θ) then ek(θ

†)
must be minimal.

Suppose that

rankH = n and rankHB = rankB = r.

Let us construct an observable process εk(θ) in the
form

εk(θ) = W+zk − x̂∗
k(θ) (18)

where W+ = (HTH)−1HT . Then

εk(θ) = W+(Hxk + vk)− x̂∗
k(θ)

= (xk − x̂∗
k(θ)) +W+vk = ek(θ) +W+vk.

(19)
Using (18) we construct IIC in the form

Jε(θ) = E
{
εTk (θ)εk(θ)

}
= trE

{
εk(θ)ε

T
k (θ)

}
.
(20)

Theorem 1. Let matrices H and B in (14) not depend
on θ and rankH = n, rankHB = rankB = r. Then
Je(θ) and Jε(θ) have one and the same minimizer and
the following relation holds

Jε(θ) = Je(θ) + Const (21)

where

Const = tr
{
W+R(W+)T

}
− 2 tr

{
W+RMTBT

}
does not depend on θ.

Proof. Taking into account (19) we may rewrite (20) as
follows:

Jε(θ) = trE
{
εk(θ)ε

T
k (θ)

}
= trE

{
(ek(θ) +W+vk)(ek(θ) +W+vk)

T
}

= trE
{
ek(θ)e

T
k (θ) + ek(θ)v

T
k (W

+)T

+W+vke
T
k (θ) +W+vkv

T
k (W

+)T
}

= trE
{
ek(θ)e

T
k (θ)

}
+ tr

{
E
{
ek(θ)v

T
k

}
(W+)T

}
+ tr

{
W+ E

{
vke

T
k (θ)

}}
+ tr

{
W+R(W+)T

}
= Je(θ) + tr

{
E
{
ek(θ)v

T
k

}
(W+)T

}
+ tr

{
W+ E

{
vke

T
k (θ)

}}
+ tr

{
W+R(W+)T

}
.

Let us find

E
{
ek(θ)v

T
k

}
= E

{
(xk − x̂∗

k(θ))v
T
k

}
= E

{
xkv

T
k

}
−E

{
x̂∗
k(θ)v

T
k

}
.

E
{
xkv

T
k

}
= 0 since xk and vk are independent and

E {vk} = 0. Thus

E
{
ek(θ)v

T
k

}
= −E

{
x̂∗
k(θ)v

T
k

}
. (22)

Let us find E
{
x̂∗
k(θ)v

T
k

}
using equations of Algo-

rithm 1:

E
{
x̂∗
k(θ)v

T
k

}
= E

{
(x̂k|k−1(θ) +Bûk−1(θ))v

T
k

}
= E

{
x̂k|k−1(θ)v

T
k

}
+BE

{
ûk−1(θ)v

T
k

}
.

(23)
E
{
x̂k|k−1(θ)v

T
k

}
= 0 since x̂k|k−1(θ) and vk are inde-

pendent and E {vk} = 0. Thus,

E
{
x̂∗
k(θ)v

T
k

}
= BE

{
ûk−1(θ)v

T
k

}
.

Now let us find E
{
ûk−1(θ)v

T
k

}
:

E
{
ûk−1(θ)v

T
k

}
=E

{
M(zk −Hx̂k|k−1(θ))v

T
k

}
=M E

{
zkv

T
k

}
−MH E

{
x̂k|k−1(θ)v

T
k

}
.

Since E
{
x̂k|k−1(θ)v

T
k

}
= 0 then

E
{
ûk−1(θ)v

T
k

}
= M E

{
zkv

T
k

}
= M E

{
(Hxk + vk)v

T
k

}
= MH E

{
xkv

T
k

}
+M E

{
vkv

T
k

}
.

Since E
{
xkv

T
k

}
= 0 then

E
{
ûk−1(θ)v

T
k

}
= MR where M = (HB)+. (24)

Using (22)–(24) we obtain

Jε(θ) = Je(θ)− tr
{
BMR(W+)T

}
− tr

{
W+RMTBT

}
+ tr

{
W+R(W+)T

}
= Je(θ) + tr

{
W+R(W+)T

}
− 2 tr

{
W+RMTBT

}
.

Denoting

Const = tr
{
W+R(W+)T

}
− 2 tr

{
W+RMTBT

}
we come to (21).

From (21) it follows that ∀θ ∈ D(θ)

Jε(θ) = Je(θ) + Const

where Const does not depend on θ.
Therefore

argmin
θ

Je(θ) = argmin
θ

Jε(θ). □
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Now, replacing the expectation operator E {·} in Jε(θ)
by the uniform time averaging, we move to the workable
IIC which can be applied in practice

Jε(θ,N) =
1

N

N∑
k=1

εTk (θ)εk(θ). (25)

The identification criterion (25) is calculated on the
basis of the values obtained by Algorithm 1. To solve
the parameter identification problem for system model
(14), we suggest to apply IIC Jε(θ,N) as an objective
function for minimization algorithms of various types. If
the gradient of the identification criterion is unknown or
finding it is computationally expensive, then gradient-
free methods such as metaheuristic GA and SA algo-
rithms can be used for minimization.

On the other hand, the gradient-based methods or
Newton-like ones can be used for minimization of the
IIC. They both take the iterative form of

θj+1 = θj − βjG
−1(θj )∇θJε(θ

j , N) (26)

where θj is the parameter vector at the jth iter-
ation. In (26), ∇θ denotes the gradient operator[
∂/∂θ1

∣∣ · · · ∣∣ ∂/∂θp]T (θ ∈ Rp), which is applied here
to the IIC (25) at point θ = θj ; G(θj ) = I , the
identity matrix, for the gradient method and G(θj ) =
∇2Jε(θ

j , N), a matrix of second partial derivatives or
Hessian matrix of Jε(θ

j , N) at point θ = θj , for the
Newton-like methods. Scalar step size parameter βj is
designed to ensure that Jε(θ

j+1, N) ≤ Jε(θ
j , N) + e

where e is a positive number that can be chosen in a va-
riety of ways [Nocedal and Wright, 2006].

3.2 Computing the Gradient of the Proposed Iden-
tification Criterion

Let θ = [θ1, . . . , θp]
T denote the vector of parame-

ters with respect to which the IIC is to be differentiated.
From (25) we have

∇θJε(θ,N) =
2

N

N∑
k=1

Sk(θ)εk(θ) (27)

where Sk(θ) is the sensitivity (p× n)-matrix, and its

(ij)-th element s
(ij)
k (θ) =

∂ε
(j)
k (θ)

∂θi
, i = 1, . . . , p,

j = 1, . . . , n.
Let us write the expression for each element of (27):

∂Jε(θ,N)

∂θi
=

2

N

N∑
k=1

εTk (θ)
∂εk(θ)

∂θi
, i = 1, . . . , p.

(28)

Differentiating εk(θ) in (18) with respect to θi, we ob-
tain

∂εk(θ)

∂θi
= −∂x̂∗

k(θ)

∂θi
, i = 1, . . . , p. (29)

3.3 State Sensitivity Evaluation using Algorithm 1
For simplicity, consider the case θ ∈ R1. To evaluate

sensitivities
∂x̂∗

k(θ)

∂θ
for the estimates of the state xk, we

prove the following lemma.

Lemma 1. Let A(θ) ∈ Rm×r be a rectangular matrix
parametrized by a scalar parameter θ. Suppose that for
a given value of θ matrix A = A(θ) has a full column
rank and left pseudoinverse matrix A+ = (ATA)−1AT .
Then

∂A+

∂θ
=(ATA)−1 ∂A

T

∂θ
(Im −AA+)

−A+ ∂A

∂θ
A+.

(30)

Proof.

∂A+

∂θ
=

∂(ATA)−1AT

∂θ

=
∂(ATA)−1

∂θ
AT + (ATA)−1 ∂A

T

∂θ

= −(ATA)−1 ∂(A
TA)

∂θ
(ATA)−1AT

+ (ATA)−1 ∂A
T

∂θ

= −(ATA)−1

[
∂AT

∂θ
A+AT ∂A

∂θ

]
A+

+ (ATA)−1 ∂A
T

∂θ

= (ATA)−1

[
∂AT

∂θ
−AT ∂A

∂θ
A+ − ∂AT

∂θ
AA+

]
= (ATA)−1 ∂A

T

∂θ

(
Im −AA+

)
− (ATA)−1AT ∂A

∂θ
A+

= (30). □

Let us construct the sensitivity equations based on the
GDM Algorithm 1. Suppose that all filter matrices F ,
B, G, Q, H , R can depend on θ, i. e., F = F (θ), B =
B(θ), etc. Using the rules of matrix differentiation, we
obtain

∂x̂k|k−1

∂θ
=

∂F

∂θ
x̂k−1 + F

∂x̂k−1

∂θ
, (31)

∂Pk|k−1

∂θ
=
∂F

∂θ
Pk−1F

T + F
∂Pk−1

∂θ
FT

+ FPk−1
∂FT

∂θ
+

∂G

∂θ
QGT

+G
∂Q

∂θ
GT +GQ

∂GT

∂θ
,

(32)
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∂R̃k

∂θ
=
∂H

∂θ
Pk|k−1H

T +H
∂Pk|k−1

∂θ
HT

+HPk|k−1
∂HT

∂θ
+

∂R

∂θ
.

(33)

Let us denote Yk−1 = BTHT R̃−1
k HB. Then Dk−1 =

Y −1
k−1 and

∂Dk−1

∂θ
= −Y −1

k−1

∂Yk−1

∂θ
Y −1
k−1, (34)

∂Yk−1

∂θ
=
∂BT

∂θ
HT R̃−1

k HB

+BTHT R̃−1
k H

∂B

∂θ

+BT

[
∂H

∂θ
R̃−1

k H −HT R̃−1
k

∂R̃−1
k

∂θ
R̃−1

k H

+ HT R̃−1
k

∂H

∂θ

]
B.

(35)
Let A = HB. Then

∂A

∂θ
=

∂(HB)

∂θ
=

∂H

∂θ
B +H

∂B

∂θ

and A+ = M .
Applying Lemma 1, we obtain

∂M

∂θ
= (ATA)−1 ∂A

T

∂θ
(Im −AM)−M

∂A

∂θ
M, (36)

∂ûk−1

∂θ
=
∂M

∂θ
(zk −Hx̂k|k−1)

−M

[
∂H

∂θ
x̂k|k−1 +H

∂x̂k|k−1

∂θ

]
,

(37)

∂Kk

∂θ
=

[
∂Pk|k−1

∂θ
HT + Pk|k−1

∂HT

∂θ

−Pk|k−1H
T R̃−1

k

∂R̃k

∂θ

]
R̃−1

k ,

(38)

∂x̂∗
k

∂θ
=

∂x̂k|k−1

∂θ
+

∂B

∂θ
ûk−1 +B

∂ûk−1

∂θ
, (39)

∂P ∗
k

∂θ
=(In −KkH)

∂Pk|k−1

∂θ

−
[
∂Kk

∂θ
H +Kk

∂H

∂θ

]
Pk|k−1,

(40)

∂x̂k

∂θ
=
∂x̂∗

k

∂θ
+

∂Kk

∂θ
(zk −Hx̂∗

k)

−Kk

[
∂H

∂θ
x̂∗
k +H

∂x̂∗
k

∂θ

]
,

(41)

∂Pk

∂θ
=
∂P ∗

k

∂θ
−

[
∂Kk

∂θ
H +Kk

∂H

∂θ

]
×BDk−1B

T (In −KkH)T + (In −KkH)

×
[
∂B

∂θ
Dk−1B

T +B
∂Dk−1

∂θ
BT +BDk−1

∂BT

∂θ

]
× (In −KkH)T − (In −KkH)BDk−1B

T

×
[
HT ∂KT

k

∂θ
+

∂HT

∂θ
KT

k

]
.

(42)
Thus, equations (31)–(42) allow us to calculate the par-

tial derivatives of state and input signal estimates for a
given value of θ.

4 Simulation Results
As a practical application, let us consider the parame-

ter identification problem of an object 2D motion model
with unknown exogenuos inputs uk:

xk =


1 θ 0 0
0 1 0 0
0 0 1 θ
0 0 0 1

xk−1 +


0 0
1 0
0 0
0 1

uk−1 +


θ2

2 0
θ 0

0 θ2

2
0 θ

wk,

zk =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

xk + vk, k = 1, . . . , N

(43)
where xk = [x1, x2, x3, x4]

T
k , x1 = x and x3 = y

are coordinates of the object, x2 = vx and x4 =
vy are its velocity components, initial state x0 ∼
N ([0, 1, 0, 1]T , I2), disturbance wk ∼ N (0, Q) is used
to model small accelerations, the turbulence, wind
change, and so on, with an appropriate covariance Q,
measurements noise vk ∼ N (0, R), and θ is the model
parameter to be identified.

If uk ≡ 0 then the motion model (43) is a nearly con-
stant velocity model [Bar-Shalom et al., 2002].

Let us put the “true” value of the model parameter
equal to θ∗ = 0.2. Figures 1–3 show estimates of the
system state vector xk obtained with Algorithm 1 for
model (43) with N = 100, Q = I2, R = 0.04I4 and
input vector

uk =

[
A sin

2πk

100
, B cos

2πk

100

]T
(44)

where A = B = 1.
Figures 4, 5 show estimates of the input vector uk com-

puted by the GDM algorithm.
Let us consider the parameter identification problem

for system model (43). We suppose that input vector
(44) is unknown.
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Figure 1. Real and estimated trajectories.

In order to conduct numerical experiments, we have
implemented in MATLAB functions for modeling sys-
tem dynamics and measurements as well as functions for
calculating the identification criterion Jε(θ;Z

N
1 ) and its

gradient.
Three MATLAB functions were used for nu-

merical minimization of the identification criterion:
simulannealbnd and ga which implement gradient-
free metaheuristic algorithms SA (Simulated Anneal-
ing) and GA (Genetic Algorithm), respectively; and
fmincon which was configured to use two different
gradient-based algorithms. All experiments were con-
ducted on the following platform: Windows 11, Intel
Core i3-1115G4 CPU @ 3.00 GHz, 8 GB of RAM.

Table 1 presents the main settings of the opti-
mizers used in the numerical experiments. The
fmincon function was used with the following
Algorithm options: interior-point and
trust-region-reflective.

The interior-point algorithm esti-
mates gradients using finite differences and
trust-region-reflective algorithm uses a
user-provided gradient of the objective function. The
remaining settings are taken by default.

Table 1. Optimizers settings

Optimizer Settings

’Display’ = ’off’, ’TimeLimit’ = Inf,
SA ’MaxIter’ = Inf, ’StallIterLimit’ = 100,

’ReannealInterval’ = 100, ’MaxFunEvals’ = Inf

’Display’ = ’off’, ’TimeLimit’ = Inf,
GA ’Generations’ = Inf, ’StallGenLimit’ = 20,

’PopulationSize’ = 10, ’PopInitRange’ = [0; 2],
’MutationFcn’ = @mutationadaptfeasible

’Display’ = ’off’, ’MaxFunctionEvaluations’ = Inf,
FMINCON ’SpecifyObjectiveGradient’ = false,

’Algorithm’ = ’interior-point’

’Display’ = ’off’, ’MaxFunctionEvaluations’ = Inf,
FMINCON ’SpecifyObjectiveGradient’ = true,

(GRAD) ’Algorithm’ = ’trust-region-reflective’

Figure 2. vx and its estimate

.

Figure 3. vy and its estimate.

Figure 4. u1 and its estimate.

A series of 500 numerical experiments was con-
ducted for different values of noise covariance matrix
R: R1 = diag(I2, 4I2), R2 = diag(0.25I2, I2) and
R3 = diag(0.01I2, 0.04I2). The following settings in
(43) and (44) were used: N = 150, Q = I2, A = 0.2,
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Table 3. Identification results.

SA GA FMINCON FMINCON
(GRAD)

Mean 0.195693 0.195523 0.195524 0.195528
R1 RMSE 0.011436 0.006132 0.006132 0.006129

MAPE 4.090858 2.603644 2.603725 2.602772

Mean 0.198845 0.198653 0.198652 0.198653
R2 RMSE 0.008248 0.002596 0.002595 0.002594

MAPE 2.813312 1.061867 1.061436 1.061106

Mean 0.199562 0.199740 0.199740 0.199740
R3 RMSE 0.008184 0.000538 0.000536 0.000536

MAPE 2.469127 0.218681 0.217678 0.217682

Figure 5. u2 and its estimate.

B = 0.5. In each experiment, numerical identification
of the parameter θ was performed based on the results of
simulated measurements. The solution θ† was searched
on the segment [0; 2]. The initial point for SA and both
gradient-based algorithms was chosen randomly in each
experiment.

Table 2 provides average number of iterations and run-
ning times for all algorithms. It can be seen that for the
problem under consideration both gradient-based algo-
rithms are approximately 10 times faster than GA and 4
times faster than SA, which in turn, on average 2.5 times
faster than GA.

Table 2. Average number of iterations and time, sec.

SA GA FMINCON FMINCON
(GRAD)

R1 Iterations 170 44 13 9
Time 2.439 6.245 0.630 0.609

R2 Iterations 172 45 13 9
Time 2.632 6.843 0.684 0.638

R3 Iterations 174 45 13 9
Time 2.582 6.591 0.604 0.682

The results of numerical identification of the parame-
ter θ are summarized in Table 3. They show that with
the selected settings, all algorithms demonstrate approx-

imately the same mean accuracy. RMSE and MAPE val-
ues decrease with decreasing noise level, but for the SA
algorithm they remain significantly larger than for other
algorithms.

5 Conclusion
In this paper, we have stated and solved the parameter

identification problem for a class of discrete-time linear
stochastic systems with unknown exogenous inputs. The
main results of the paper — the newly constructed instru-
mental identification criterion (IIC) and the system state
sensitivity equations for evaluation of the IIC gradient.

We have proved that the original identification crite-
rion that depends on unobservable estimation error and
the new instrumental identification criterion that depends
on observable process have one and the same minimizer.
Therefore, to solve the parameter identification problem,
one can use the IIC instead of the original identification
criterion. Moreover, we have shown that the values of
the IIC can be calculated using the GDM Algorithm 1,
and we have constructed new state sensitivity equations
to calculate the values of the IIC gradient.

Numerical experiments have demonstrated how the
newly proposed instrumental identification criterion and
method for calculation the IIC gradient can be applied
for solving the parameter identification problem of the
considered stochastic system model with unknown peri-
odic input signal. The comparison results of four dif-
ferent methods (gradient-based and metaheuristic) for
minimizing the proposed identification criterion are pre-
sented.

It is worth noting that the restriction on the rank of ma-
trix H introduced in Theorem 1 is not principal. Our
method can also be used for noises covariances identifi-
cation as an alternative to the method proposed recently
in [Kong et al., 2023].
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