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Abstract— We investigate the possibility to suppress noise- Before proceeding, we transform (1) into a rotating frame
induced intensity pulsations (relaxation oscillations) m semicon- 2(t) = u(t) e~ twot
ductor lasers by means of the Pyragas control scheme. In caatst

to previous studies, where the control was used to enhanceeh . _ _ iwoT . iwot
correlation time and thus the coherence of the oscillationswe u(t) - ()‘ K) u(t) tKe uft T)+e Dﬁ(t)
focus on the suppression of the oscillations and use the means () = awu(t)+bu(t—7)+ DE(t), 2

oscillation amplitude as a measure. We first consider a genier

normal form model which is a paradigm for a system close to whereg(t) = ¢’“0'¢(t) is a noise term with the same properties

a Hopf bifurcation. Here, we find an analytic expression for he  o5¢ (1) The purpose of the transformation was to makeal,

mean square amplitude of the oscillations. We then investie hich will b | ich d h

the control scheme analytically and numerically in a laser rodel Which will be necessary later. In [14] Kiichler and Mensc

of Lang-Kobayashi type. analyzed equation (2) for real variables. We will here fwllo
their ideas and adapt them to the complex case.

We will calculate the auto correlation function
I. INTRODUCTION

Time-delayed feedback control has been widely studied to G(t) == (u(s+t) u(s))
stabilize unstable states [1], [2], [3], [4], [5]- Anotherettion
of research on feedback has focused on the control of noi8ean intervalt € [0,7]. In particular, this gives the mean
induced oscillations [6], [7], [8], [9], [10], [11], [12],43]. Square radiugr?) = (|u[?) = G(0) of the oscillations. With
Here the works have mainly studied the possibility to enkanthe Green’s function(t) solving
the correlation time and thus to increase the regularityhef t
oscillations. In this paper we shift the attention towarlds t o (t) — auo(t) — buo(t — 1) = 5(t),
suppression of noise induced oscillations. This idea ig firs
studied in a generic model consisting of a damped harmoHYF
oscillator driven by noise. We then investigate a prad'_[;'rcal0

ereug(t) = 0 for t < 0, we can formally find a solution
equation (1)

relevant example, namely a semiconductor laser subject to +
optical feedback by a Fabry-Perot resonator. u(t) = /dt1 wolt — 1) Dé(tl). 3)

II. GENERIC MODEL

The generic model we consider is a damped harmoritsing (3) we obtain

oscillator (stable focus) subject to noisg€) (and feedback . -
control Git) = (ult+t)u(t))

i+t i
A = (w2 D0 (20 (@) = [ [t n)uG-t)
—K [2(t) — 2(t = 7)], K R
where A < 0 and w, are the damping rate and the natural D (£(t1) £(t2))
frequency of the oscillator respectivelyy, is the noise ampli- oo
tude, K is the feedback strength ands the delay time of the s=t—t, 2D2 /ds wo(s + t) o (s)
control term. We consider uncorrelated white Gaussianenois
0
) = &) +i&(1), (& €R) = 2D?C().
i) = 0, .
s f ) oSSt The Green’s functionu, can be calculated [15], [14] by
- s iteratively integrating equation onintervalsr, (k+1)7
(&1 &) ot 1) | ) e
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From the definition ofC' and u, it follows, that C' satisfies  Figure 1 displays(r?) as a function of the delay time.

the following equations The mean square oscillation radius is modulated oveiith
c) = oD @ a periodTy = 27/wp. The maxima and minima occur at
) = aCt)+bC(t—71) (>0 (5 ro=nTy and r = 22Flp
Ct) = aCt)+bC(r—t)  (t>0). 6
®) aC(t) +6C(r —1) (t>0) © respectively. The smallest oscillation radius is reached a
Using these three equations, we can find an ODECfor
d2 Topt = T0/2
Sow Q oac'w)-b0r -1
dt . Il. L ASER MODEL
= alaC(t) +bC(t —7)] In this section we investigate the effects of feedback and
—blaC(T —t)+bC(-1)] noise in a semiconductor laser. A laser with feedback from a
= d*C(t)+abC(t—1) conventional mirror can be described by the Lang-Kobayashi
—abCE—7) - |B*C(=) equations [16].
= (a® =) C(). K ;
]
Here it was necessary to have a reain order for the delay _‘_:J _ %
terms to cancel. Thu§' is of the form = —————<—
C(t) = AeM + Be ™, Laser Resonator
with Fig. 2. Setup of a laser coupled to a Fabry-Perot resonatiizirey the
A= \/(12 12 = \/(/\ _ K)Q _ K2, time-delayed feedback control
The complex coefficients! and B can be found from the  peeghack from a Fabry-Perot resonator is described by a
equations modified set of equations [17], [18]
c(0) = C(0)eR, )
C0) = aC(0)+bC(T) (8) %E . %(1 +ia)nE — 9K [E(l) — eV E(t — )] + Fa(t),
and d 9
- Tan = p—n—(1+n)|E|,
d
-1 = Jds— [uo(s) uo(s)] (9)  where
0 E  is the complex field amplitude,
7 n is the carrier density,
= ds [to(s) uo(s) + uo(s) tio(s)] « is the linewidth enhancement factor,
0 K is the feedback strength,
= aC(0)+bC(1) +aC(0)+bC(T). T is the roundtrip time in the Fabry-Perot,
D is the pumping current,

Solving equations (7),(8) and (9) fot and B gives the mean T s a timescale parameter,
square oscillation radius. See eq. (11) at the top of the next . s a noise term describing spontaneous emission,
page. ©,1 are phases dependening on the mirror positions.

0.002 — We assume Gaussian white noise
sllmulatlol}% +
analytic resu

(Fp) =0,  (Fe(t) Fp(t')) = Rypd(t = 1),

0.0015 B . .
’ with the spontaneous emission rate

R, = B(n + no).

Transforming these equations into equations for interesity
phaseF = /1 ¢ yields

(r%) 0.001 |

0.0005
d
o1 = nl-2K[I- VIV, cos(¢, — ¢)] + Rsp + Fi(2),
0 | | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10 11 12
d 1 I .
T/m E¢ = §an+K\/\/; sin(¢r — @) + Fy(t), (10)
Fig. 1. Mean square radiug2) of oscillations as a function of the delay ¢
time 7. ParametersA = —0.01, wo = 1, D = 0.001/27, K = 0.2 T—n = p—-n—(14+n)l,



C(0) = (r?) =Re(A)+ Re(B)
1 K? +2A? — K% cosh(2A7)

T TIA K cosh(A7) [A cos(woT) + K sinh(A7)] + a [A + K cos(weT) sinh(A7)]’ (11)
with } analytics simulations
<FI>:05 <F¢>:O’ ‘
(Fi(t) Fi(t')) = 2R.0(t—1t)
(FoO) Fult)) = 225t —1),

Setting £7 = 0, 4n = 0, $£¢ = const, K = 0 and _ _ _
replacing the noise terms by there mean value, gives a seﬁ@‘ngi}y é”;%’gf::nig?ugsg‘f{f:'dg?:;'fm?r the power speut of the
equations for the steady state solutidns n. and ¢ = w.t Parametersp = 1, T = 1000, o = 2, B = 10~5, ng = 10, K = 0.002
without feedback (the solitary laser mode). In [17] the aush
showed, that this laser mode always exists, for arbitigry-
and p andv, and that it is the only laser mode if

1 analytics

_ S5i(w) S
™14+ o2 o o.olw(W)

0.008
We will only consider this regime and investigate investiga | i 0006
. . . 0.002 .
how the control term influences the oscillations, causechby t o
noise, around this mode. Linearizing equations (10) ardbed

steady stateX (t) = X, +0X (¢), with X (t) = (I, ¢, n) gives

K<K.=

d Fig. 4. Analytical and numerical results for the power speut of the
_X(t) = UX(t) -V [X(t) — X(t — 7-)] + F(t)7 (11) frequency for different values of the delay time
dt Parametersp = 1, T'= 1000, a =2, § = 1075, ng = 10, K = 0.002
with
U — 0 0 %a 7 Figures 3 and 4 display the intensity and the frequency
“ll4n) 0 —1A+1) power spectra for different values of the delay timeAll
T * T * . . . .
spectra have a main peak at the relaxation oscillation &equ
V = diag(K, K, 0) Qro =~ 0.03. The higher harmonics can also be seen in the
spectra obtained from simulations. The main peak decreases
and with increasingr and reaches a minimum at
F= (FI, F¢a O)
Fourier transformation of (11) gives . Tro 2w 100
~ . ~ opt ~ T 5T — ~ :
Xw)=[iw-—U+V({1—-e ™) Fw). 2 28ro

=M

. . L With further increasingr the height increases again until it
The transformed covariance matrix of the noise is g 9 9

reaches approximately its original heightrats Tro. A small
~ 1. R, i indi ion-0sci
(F(w) F(w)') = —diag(2Repl., =2, 0)d(w — '), peak in the power spectra indicates that the relaxatior-osci
2m 2L, lation are strongly damped. This means that the fluctuations
with the adjointt. The matrix valued power spectruf(w) around the steady state valuesandn. are small.

can then be defined through As a measure for the steadiness of the intensity we will use
S(w) 5w — o) = (X(w) X(w)") the variance of the intensity
and is thus given by

AT = (((I) = 1)?).
S(w) = diag(Ssi(w), Ssp(w), Ssn(w)) <(< ) — 1) >
% M diag(2Rp 1L, ;%—Z’, 0) Mt

The frequency power spectrum is related to the phase po
spectrum by [19]

This measure corresponds to the quantit§) we considered
\”%Fhe first section. Figure 5 displays the variance as a fonct
of the delay time. The variance is minimalats Tro/2, thus
for this value ofr, the intensity is most steady and relaxation

Ssg(w) = w? Ssp(w). oscillations excited by the noise have a small amplitude.
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Fig. 5. Variance of the intensity vs. the delay time. Paransep = 1, T =
1000, a =2, B = 1072, ng = 10, K = 0.002

IV. CONCLUSION

In this paper we showed that time-delayed feedback can
suppress noise induced oscillations. (8l
In the first part we investigated a generic model consistin
of a stable focus with noise and control. We found an analytic

expression for the mean square radius of the oscillationis. T
quantity is modulated with a period @i = 2” over 7. For
7 = Ty/2 the oscillations have the smaIIest amphtude [11]

In the second part we considered a laser coupled to a Fabry-
Perot resonator. In the laser spontaneous emission naigeex

. o i i o [12]

relaxation oscillations. By tuning the cavity round trim# to
half the relaxation oscillation periofi,,; ~ Tro/2 the oscil-
lations can be suppressed considerably. This is demoadtrdt
in the power spectra of the intensity and the frequency, eher
the relaxation oscillation peak has a minimal heightgg. [14]
The variance of the intensitA/ shows a minimum at,,, [15]
thus the intensity is most steady at this/alue.

[16]
[17]
(18]
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