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Abstract
In this paper, we investigate a discrete model of pop-

ulation dynamics for the species with simple age struc-
ture. The cases when survival rates represent the func-
tions of both age groups numbers are considered. We
classify the types of dynamical modes and investigate
the scenario of transition from regular to chaotic behav-
ior, and vice versa. The optimization problem is stated
and investigated. The problem was to find optimum
catch quotas and a steady value of population num-
ber providing a theoretically maximum possible sus-
tainable yield. It is shown that a single age class har-
vesting is the optimal one, and a choice of the age class
is determined by the values of population parameters
and prices ratio. It is found that stationary harvesting
strategy with constant quota stabilizes the population
dynamics for definite values of parameters. However,
there is a range of the parameters at which there appear
two-year fluctuations of number in the population. It
leads to the necessity of transfer from harvesting based
on constant catch quotas to threshold harvesting. It is
shown that the threshold strategy always stabilizes the
systems dynamics.
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1 Introduction
The optimal harvesting problem is one of the impor-

tant problems in mathematical biology. It has been
considered in many articles [Beddington, Taylor, 1973;
Clark, 1990; Jensen, 1996; Kokko, Lindstrom, 1998;
Idels, Wang, 2008]. For many specific populations
the optimum strategies of exploitation have been de-
veloped [Skaletskaya, et. all, 1979; Aanes, et. all,
2002]. To develop the optimal harvesting strategies, a
wide range of mathematical models was built. In spite

of the extensive study of this problem, still there is a
possibility of finding its solution and more precise re-
sults for specific mathematical models, depending on
the operation objectives.
In this paper, we consider the exploited population

which, by the end of each reproduction season, con-
sists of two age groups: juveniles (immature individ-
uals) and adults (participants of the reproduction pro-
cess). We assume that the time between two repro-
duction seasons is enough for the juveniles to become
adults. Increase in the population number is regulated
by density-dependent limitation of a younger class sur-
vival.
We study the harvesting strategy not leading to insta-

bilities or extinctions, which results in maximum sus-
tainable yields. The optimal control problem is solved
by means of determining the optimal catch quota at dif-
ferentiated harvesting in the population age groups. It
is important that the development of harvesting strate-
gies should be closely connected with the study of pop-
ulation structure, in particular, age structure. First, the
population increment is a complex process involving
the juveniles survival and growth, etc. and each of
these characteristics may be affected differently by a
change in the population density and harvest. Secondly,
in most cases the field men are interested only in a part
of the exploited population (eg, mature trees, big fish
of marketable size, adult seals and their cubs).

2 Mathematical model and its research
In our mathematical model, n is a reproductive season

number, x is a number of juveniles, y is a number of
adults. The dynamic equations for our model are as
follows

xn+1 = ayn

yn+1 = s(xn, yn)xn + vyn

}
(1)



where a is the birth rate, and v is the survival rate of
adults and s(x, y) is the survival rate of juveniles as a
function of the age groups sizes
We consider two versions of the survival rate of ju-

veniles a) s(x, y) = exp(−αx − βy); b) s(x, y) =
1 − αx − βy, where α and β are parameters which
characterizes the ratio of intensity of the limitation of
juvenile survival rate due to the number of adults and
the self-limitation. To simplify the analysis of this sys-
tem, we introduce a new parameter q = β/α. The
equilibrium points of special cases for the system (1)
are found. The conditions of existence and stability for
every one are determined.
We illustrate modeling results for the case when the

survival rate of juveniles is a linear function (s(x, y) =
1− x− qy).
Depending on the mode of stability loss by the non-

zero solution for the system (1), according to which the
population dynamics scenario will be developing, we
can identify the following intervals for the parameter q
values (fig.1).
1) In case of 0 ≤ q ≤ 1, loss of stability may happen

only at the moment of the pair of complex- conjugate
roots of characteristic equation of system (1) passing
through a unit circle (| λ |= 1, λ = eiϕ) (fig. 1a).
As a result quasi-periodic oscillations of the num-

ber of individuals appear in the system; they become
chaotic if the systems parameters are further changed
(fig. 2 a).
2) Subject to 1 < q ≤ 5 a new boundary of stability

adds (λ = −1). As a result, a nonzero equilibrium
becomes unstable, and the cycle of length two appears
in the system.
With the parameter a further growth a regular cycle

destroys and passes to the equilibrium point, which be-
comes unstable through the boundary λ = eiϕ, and
quasi-periodic oscillations appear in the system (fig. 2
b).
This change in modes of the dynamics (from stabi-

lization of the system to its destabilization, and vice
versa) is realized within the range of v values, sat-
isfying the inequality: 0 < v ≤ v1, where v1 =
(5q + 3 − 4

√
q(q + 3))/9. If v > v1, loss of stabil-

ity under this model happens when the eigenvalues are
conjugates and | λ | transitions through 1 (fig. 1b).
3) At 5 < q < 9.8, there are three possible sce-

narios of stability loss: emergence of 2-cycles, when
0 < v ≤ v2, where v2 = (q +3−

√
q(q − 2) + 49)/2,

the change of dynamics modes (equilibrium, 2-cycles,
equilibrium, quasi-periodic oscillations), when v2 <
v < v1, and the invariant curve emergence and destruc-
tion at v1 < v < 1.
4) If 9.8 ≤ q < 12, then there are two possible scenar-

ios of stability loss (fig. 1 d): the emergence of 2-cycle
when 0 < v ≤ v2 (fig. 2 c), and the emergence of the
invariant curve, when v2 < v < 1.
5) With further growth of the parameter q ≥ 12 loss of

the equilibrium stability may happen with the transition
of one of the eigenvalues through -1 and is accompa-

nied by a cascade of period-doubling bifurcations (fig.
1e).
We have obtained similar research results for the case

when the survival rate of juveniles is an exponential
function (s(x, y) = exp(−x− qy)).

3 Formulation and solution of the problem of op-
timal control over the population dynamics

We assume that both age groups (juveniles and adults)
are of commercial value. The population exploitation
is characterized by the extraction of some individuals
from every age group at fixed timing.
When the population is harvested the model (1) is to

be:

xn+1 = (ayn)(1− u1)
yn+1 = (s(xn, yn)xn + vyn)(1− u2)

}
(2)

where u1 and u2 are the catch quotas of immature and
mature individuals respectively.
We consider the strategy with a stationary character of

exploitation not leading to the population destruction.
The catch quotas u1 and u2 at stationary harvesting

ensure the yield, its total income (I) defined by

I = c1u1(ay) + c2u2(s(x, y)x + vy) (3)

or I = c1R1 + c2R2,
where x, y are stationary numbers of the system (2),

c1 and c2 - an average price of a single individual from
both younger and older age classes, respectively, Ri

(i = 1, 2) is the number of caught individuals belong-
ing to the respective group.
The optimization problem is to determine the opti-

mal catch quotas (u1, u2) and equilibrium values of
the population size to provide a sustainable yield and
maximum sales return.
In fact, we need to maximize the functional (3).
As a result of the optimization problem solution we

have found out that the functional (3) maximum is
achieved only at the borders u1 = 0 or u2 = 0.
In this connection, the optimization problem was con-

sidered for the cases: 1) u1 = 0, ie, the control action
is completely determined by the catch quota for ma-
ture individuals, and 2) u2 = 0, ie only juveniles are
exploited.
The equilibrium values of population size and opti-

mal catch quota are found for each special case. The
conditions of existence and stability for every one are
determined.
To find the function absolute maximum (3) we have

compared the income values of stationary hunting for
adults (I2) and juveniles (I1).
For example, in case of s(x, y) = 1 − x − qy the

maximum (3) is



Figure 1. The dynamic modes maps of the system (1) on the (v, a) parameters plane at s(x, y) = 1− x− qy and at various values of the
parameter q. The periods of oscillations are numerated.

Figure 2. Scenarios of changes in the limit distributions of the number of juveniles (x) in the attractors of system (1) as dependent on the values
of the parameter a at s(x, y) = 1− x− qy. The behavior of the limit distribution of the number of adults (y) is similar.

I = max{I2, I1} = (a+v−1)2

4a(a+q) max{c2, ∆c1},

where ∆ = (4a(a+q)(H−a(a+q))((1−v)(1+q−v)−H)
(a+v−1)2(a(1−v)+H)((a+q)(1+q−v)+H) ,

H =
√

a(1− v)(1 + q − v)(a + q).
Consequently, if c2 > ∆c1, then, there is the maxi-

mum at the boundary u1 = 0, and the adult individuals
are exploited. If c2 < ∆c1, then u2 = 0, and only
immature individuals are harvested (fig. 3).
It is shown that there is a domain of population param-

eters, characterized by the loss of equilibrium stability
at its transition into, and the emergence of 2-cycles,
even in case of harvesting strategy based on constant
catch quotas. Harvesting promotes a decrease in the
amplitude of oscillations, not leading to their complete
disappearance (fig. 4).
In this connection, we consider the strategy of thresh-

old harvesting [Skaletskaya, et. all, 1979; Svirezhev,
Elizarov, 1972]. The optimal control takes the form

Vi = zi − zM at zi ≥ zM

Vi = 0 at zi < zM

}
(4)

where i is the year of exploitation, z is the size of ex-

ploited age group, zM is the number at which the pop-
ulation growth is maximum possible, V is the yield.

This harvesting strategy always stabilizes the systems
dynamics (fig. 4).

4 Conclusion

We have considered a nonlinear model of the popu-
lation, which has a complex structure of solutions de-
pending on the parameters values (equilibrium, the cy-
cles of varying length, quasi-periodic oscillations, and
the transition to cycles and back to equilibrium). One
of the mechanisms for population number stabilization
is optimal control over harvesting. It is shown that opti-
mal harvesting means exploitation of only one age class
and its choice is determined by the values of popula-
tion parameters and prices ratio. The highest sustain-
able yield is achieved with threshold harvesting. First
the population is reduced to the size at which its incre-
ment maximum, and then it is maintained at this rate
by harvesting up to the end of the exploitation process.



Figure 3. Surface of the function of income, dependent on price values for s(x, y) = 1− x− qy, a = 1.8, v = 0.2, q = 0.5.

Figure 4. Dynamics of the juveniles number (x) and the adult number (y) under harvesting based on constant catch quotas of mature individuals
(control 1) and under threshold harvesting (control 2) and without control. The harvest begins after 25-th generation. Population parameters are:
a = 2, q = 4.5, v = 0.1, x = 0.03, y = 0.01, s(x, y) = 1− x− qy.
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