
ENOC-2008, Saint Petersburg, Russia, June, 30–July, 4 2008 

 

 

 

THE FUNCTION OF THE DISTANCE OF A CURVE FROM ITS CENTROID 

IN OPTIMAL SYNTHESIS OF A FIVE-BAR LINKAGE 

Jacek Buśkiewicz 
Poznan University of Technology 

Poznan, Poland 

fax: 48 061 665 2307 

jacek.buskiewicz@put.poznan.pl 

 

Abstract  
A functional description of a closed curve, applied 

in computer image processing and pattern recognition, 

is adapted to optimal synthesis of 2-DOF planar five-

bar mechanism. The function is the distance of a 

curve from its centroid (DCC). In the applicable form 

the DCC is represented by normalized coefficients of 

its expansion into Fourier series. On the basis of the 

DCC a new function is defined, which itself is 

invariant under affine transformations. A distance 

norm in the sense of the affinity of two curves is 

introduced. The norm is applied as an objective 

function in the problem of mechanism synthesis 

carried out by the genetic algorithm.  
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1 Introduction 
In general mechanism synthesis is aimed at 

designing a mechanism so that it realizes specific 

technological tasks. Nonetheless, at the level of the 

design it is possible to optimize dynamical features of 

the mechanism. The paper does not deal directly with 

the dynamics, but the formulation of a synthesis 

problem may involve constraints on the range of the 

transmission angle to minimize the forces transmitted 

by the links.  

Synthesis of a linkage as the path generator is one 

of the most important and intensively investigated 

problems of mechanism theory. Graphical methods 

came into being at earliest [Artobolovski, 1977; 

Mayourian, and Freudenstein, 1984]. Analytical 

methods, though being developed, were restricted to 

few problems due to high complexity [Sandor and 

Erdman, 1984]. Nowadays the synthesis is carried out 

with the use of probabilistic (neural networks [Vasiliu 

and Yannou, 2001] and evolutionary algorithms 

[Kunjur and Krishnnamuty, 1995; Cabrera, Simon 

and Prado, 2002; Laribi, Mlika, Romdhane and 

Zeghloul, 2004]) and deterministic (gradient) 

methods. The optimization process consists in 

minimizing an objective function, i.e. a distance 

between the prescribed and generated curves. But 

comparison of the desired and generated curves point 

to point has many disadvantages [Ullah and Kota, 

1997]. The satisfactory results are obtained when a 

complex function describing the curve is expanded 

into Fourier series and normalized [Ullah and Kota, 

1997, Vasiliu, Yannou, 2001; McGarva and 

Mullineux, 1993; McGarva, 1994]. The same 

procedure may be applied to the properties of curves 

as: cumulative angular function or curvature [Zahn 

and Roskies, 1972; Lu and. Kota, 2002] expressed in 

a functional form. Well-known and wide-used 

procedures of a normalization of the Fourier series 

expansion reduce the description to the sequence of 

numbers. The distance norm between two curves is 

expressed in terms of the normalized Fourier 

coefficients. These methods allow minimizing the 

number of optimized variables and, which is related to 

it, the cost and time of numerical calculation. 

A lot of methods of the shape description are 

elaborated for purposes of computer image processing 

and pattern recognition [Kindratenko, 2003; 

Chanussot, Nystro and Sladoje, 2005]. One of them is 

adapted in the present paper to the path synthesis 

problem. The function describing a closed curve is the 

distance of the curve from its centroid (DCC). The 

mathematical assumptions and normalization 

procedures are given, so that the description is 

invariant under rotation, scaling, mirror reflection, 

change of the direction, number of points defining the 

curve and choice of a starting point. This makes the 

method suitable for constructing an objective function 

being a measure of the distance between two curves in 

the sense of the affinity instead of the sense of 

closeness on the plane. Moreover, the features of the 

DCC enable constructing an objective function 

without referring to the harmonic analysis. 

The applicability and effectiveness of the function 

is verified by the results of the optimal synthesis of 2-



DOF planar five-bar mechanism executed by the 

genetic algorithm.  

 

2 The DCC function description 

It is assumed only the continuity of a closed curve 

with the clockwise orientation given parametrically 
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The distance of the curve from its centroid (the 

DCC function) referred to the curve length is defined 

as follows: 
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Figure 1. A plane closed curve and its DCC function f . 

 

The DCC function is expanded into the Fourier 

series 
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with coefficients (FCs) 
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The DCC function can be alternatively expanded 

into the polar form of the Fourier series 
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It is obvious that rotation by an angle, translation, 

scaling and mirror reflection do not change the DCC 

function as well as the FCs. 

The change of the starting point and reversal of 

the direction require more penetrating analysis. The 

normalization of the FCs is done to provide their 

invariance under these transformations. 

The phase angles nα  only undergo the 

normalization since the harmonic amplitudes nA  are 

invariant under the considered transformations. 

The invariance with respect to the shift of the starting 

point is ensured by bringing to zero the first non zero 

harmonic. Provided it is the j-th harmonic, the phase 

angles are modified as follows: 
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where 
j

jα
α =∆ . The phase angles nα  are brought 

to the interval )2,0( π  for each n . The polar 

expansion of the DCC f
~
 of the anticlockwise curve 

has the form 
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The coefficient 0a  does not change whereas the phase 

angles nα  differ with signs. If for the clockwise 

curve 0
0
>= αα

n
, for the anticlockwise curve 

0
αα −=

n

)
 and the substitution παα 2

0
+−=

n

)
 brings 

the angle to )2,0( π . As the substitution 

παα 2
0
+−=

n

)
 is allowed, it may be applied to all the 

angles πα >
n

 bringing them to ),0( π . 

 Once the curve is given by a sequence of m  

points iP  of the coordinates ( )ii yx , , the set if  of the 

values of the DCC function is obtained 
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approximated numerically as follows: 
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where 1+=∆ iii PPs . 

A closed curve may be considered as the polygonal 

curve, then the DCC function may be defined as the 

continuous function.  

The DCC function is approximated by p  first 

terms of the Fourier expansion (Eq. 5). The 

rectangular rule is applied to the integrals Eqs. (4.1-

4.3), yielding the numerical approximation of the 

FCs.  
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Then, the FCs are normalized as it is described in 

this section. 

 

3 Geometric and kinematic analysis of the 2-DOF 

five-bar mechanism 

Most synthesis methods are tested on the four bar-

linkage. Many of them are restricted to this 

mechanism only. In the paper the 2-DOF five-bar 

linkage is chosen for some purposes: a proposed 

objective function is checked on synthesis of more 

miscellaneous paths and for greater number of 

optimized variables, the particular case of the 

considered mechanism is the four-bar linkage. The 

practical applications early motivated the study in the 

field of synthesis of five bar mechanisms [Rose, 1961; 

Pollitt, 1962]. In order to synthesize a precise path 

generating mechanism the five-bar linkage is 

integrated with gears [Mundo, Gatti and Dooner, 

2007] giving, in fact, the mechanical system of single 

DOF.  

The mechanism consists of four moveable links, 

the active links are indexed as 1 and 3. Then, the 

angles 31,αα  are known at each time. Having given 

the lengths, the other angles 42 ,αα  are sought for. 

The path is traced out by the point D. The geometric 

and kinematic analyses are preceded by checking the 

conditions for the full- rotability [Ouyang, 2002; Feng 

G., Xiao-Qiu Z., Yong-Sheng Z. and Hong-Rui W, 

1996]. 

 

 
Figure 2. 2-DOF five-bar mechanism with the point D tracing out 

paths. 

 

Firstly, the position of the point C ),( yx  is 

determined. The lengths of the links 2, 4 are  
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where the coordinates of the points A and B are: 

11 cosαlxA = , 11 sinαlyA = , 335 cosαllxB +=  

33 sinαlyB = .  

Subtracting Eqs. (10.2) from Eqs. (10.1) gives the 

equation of a straight line 
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Two cases are possible: 

(a) 04 ≠k . 

Eq. 12 is substituted into Eq. 10.1, which gives the 

quadratic equation 
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Assuming that 042 ≥−=∆ KML , two positions of 

the point C are possible 
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(b) 04 =k . 

In both possible configurations the point C lies on the 

same vertical line. Then, substituting 

3

21
21

k

kk
xxx

−
===  into Eqs. (10.1) gives the 

quadratic equation 
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with the coefficients 1=N , AyP 2−= , 
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2 2 kxxxM A +−= . When NRP 42 −=∆ >0 
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Having determined the coordinates of the point C, the 

unknown angles are computed as follows 
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The position of the coupler point D is specified by the 

following kinematic equations: 
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4 The Genetic algorithm description 

The genetic algorithm (GA) with the objective 

function built by means of FCs (Eq. 19) is applied to 

solve the problem of the mechanism synthesis.  

 

The objective function 

The following objective function is proposed  

(19) 
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Where iiAa α,,0  and iiAa ',''0 α  are the FCs of 

curves being compared. Such a form of the objective 

function reduces the differences between the values of 

the amplitudes and phase angles, which might have 

influence on the result when the objective function 

was taken as  
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The scheme of the algorithm 

In accordance with the nomenclature of the 

evolutionary algorithms the single mechanism is an 

individual, its optimized features are the lengths 2l , 

3l , 4l , 5l , 6l , the initial angle of the link 3 S3α , the 

angle 5α  and the angular velocities 1ω , 3ω . Only 

integer values of 1ω , 3ω  divided by their greatest 

common divisor are allowed. The length of the link 1 

11 =l . The link 1 is connected with the frame at the 

origin and the immoveable link is horizontal. 

The population is a set of all the mechanisms. In 

each successive population the individuals are sorted 

in the increasing objective function (the fitness is 

reciprocal of the objective function). The best 

individual is the first parent for all new individuals, 

the second parents are selected at random. The feature 

of a new individual is taken over from the best 

individual with probability bp . The features of the 

new individual are mutated. 

For the needs of the genetic algorithm the 

following parameters are taken:  

- the number of individuals maxN  (the size of 

population),  

- the number of individuals to be crossed over in each 

generation crl ,  

- the number of individuals to be randomly generated 

in each generation. 

 The algorithm itself does not involve any special 

improvements, and as a tool widely-used and well-

known in mechanism theory is not described in depth. 

The only enhancement consists in introducing to each 

population ranl  ( crran lNl −< ) randomly generated 

individuals set instead of the worst fitted ones. Then, 

along with the improvement of the best individual, the 

whole working space is searched through. It prevents 

the algorithm getting stuck in any local minima. 

Moreover, the mutation coefficient is being decreased 

while the rate of the optimization process does not 

change in a specified number of iterations. 

 

5 Numerical experiments 

The objective of the analysis is to determine the 

rate of the convergence to the required solution, the 

similarity of both the required and generated curves, 

the computational cost for finding the best solution, 

the uniqueness of the assignment of the function to 

curves. 

To demonstrate the effectiveness of the method 

the numerical experiments are performed on the 

following test curves (Figs. 3, 6).  

 

Triangle given by the set of points (x,y) 
x={ 1.0 2.0 3.0 4.0 5.0 6.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0}, 
y={ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 6.0 
5.0 4.0 3.0 2.0 1.0}. 

EllipseArc - The curve is traced out from 0=t  to 

5.0=t  and then back to the starting point 0=t  along 

the same path. As a result self-overlapping closed 

curve is produced. 
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CurveA - The curve is given parametrically 

))sin()4(cos(5)( tttx ππ += )4sin(3)( tty π= , 

)1,0(∈t . 

CurveB - The curve is given parametrically 



)2(cos5)( 3 ttx π= , )2(sin5)( 3 tty π= , )1,0(∈t . 

 

Many numerical experiments showed that the 

normalized area enclosed by the curve makes a 

significant contribution to improving the efficiency of 

the algorithm (the accuracy of the approximation, 

computational cost). The normalized area is computed 

as follows: 
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Hence, the formula for the error (Eq. 19) is 

completed by adding the new term '*0
*

0 AA − . 
*A  is 

of the same order of magnitude as the coefficients 

nA . For example for a circle of radius R  it is 
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The following parameters are taken as input for 

the GA. 

- The number of individuals 55max =N . 

- The number of individuals to be crossed over in 

each generation 35=crl . 

- The number of individuals to be randomly generated 

in each generation 30=ranl . 

- The probability of choosing the feature of the best 

individual while crossing 75.0=bp . 

The intervals of optimized parameters: 

)20,1(,,, 5432 ∈llll , )20,0(6 ∈l ,  

)2,0(3 πα ∈S , )2,0(5 πα ∈ , 

)3,3(1 −∈ω , )2,2(3 −∈ω . 

 

The parameters of the mechanisms generating the 

curves closest to the desired ones and the errors αAE  

are collected in Table 1.  

The number of the FCs p  is taken equal to 5. To 

precisely estimate the higher harmonics (Eq. 5) 

appropriately large number of points defining a curve 

is required. The numerical experiments show that for 

curves given by 20-40 points, a good approximation is 

obtained for the first 6,5,4=p  harmonics. The total 

number of iterations performed does not exceed at 

any example 10000. As can be seen from Figs. 3, the 

degree of the similarity of the test and generated 

curves is satisfactory. Whenever the numerical 

algorithms were executed the high degree of 

repeatability of the results was obtained. In order to 

best fit found curves to the test curves in general case 

they have to be to be translated, scaled, reflected 

against Y-axis and rotated. It is done by a translation 

of the centroids of both curves to the same point and 

adjusting its centroidal axes, which is not here 

discussed in detail [Dibakar and Mruthyunjaya, 

1999]. 

 

Table1 

The dimensions of the mechanisms generating the approximations 

of the test curves with the errors αAE . 

 Triangle CurveA CurveB 

2l   11.06 14.22 17.762 

3l   4.897 2.367 15.73 

4l   14.05 19.8797 5.33 

5l   12.03 16.311 2.29 

6l   3.587 8.2622 3.167 

S3α  5.61 2.751 3.265 

5α  4.079 3.98345 1.854 

1ω  1 2 3 

3ω  -1 -1 -1 

αAE  0.01909 0.00303 0.01583 

 

a)  

b) 

c)  
Figure 3. The test curves (dashed line - 0) and the curves generated 

by the DCC method (continuous line - 1) (a) the triangle, (b) 
CurveA, (c) CurveB. 

 

Fig 4 shows the typical progress of the 

convergence process of the synthesis carried out by 

DCC method. In most cases the first 2000 – 3000 

iterations allows localizing an area in nine-

dimensional space containing the final solution. The 

fastest convergence rate is observed in the 1000 initial 

iterations and further iterations gradually improve the 

best solution, which can be supported by decreasing 

the mutation and disturbance coefficients. 

 



 
Figure 4. The changes in the lengths of the mechanism while 

converging to the best solution on the example of synthesis of the 

CurveA. 

 

For illustrative purposes the NFCs of the DCC 

functions of the CurveA and of its best approximation 

are collected in Table 2. The DCC function, its 

approximation by the Fourier series truncated to 5 

harmonics as well as the normalized function for this 

curve are drawn in Fig. 5. 

 
Table 2 

The NFCs of the DCC function for the CurveA and its best 
approximation obtained. 

The DCC method 

nr Test curve - CurveA Generated curve 

 
n

A  
n

α  ( *
0 A=α ) n

A  
n

α  ( *
0 A=α ) 

0 0.09193 0.03296  0.09208 0.03289 

1 0.02844 0 0.02811 0.00000 

2 0.01681 0 0.01672 0.00256 

3 0.04017 0 0.04014 0.00782 

4 0.01264 3.14159 0.01152 3.11166 

5 0.00516 0 0.00507 0.19222 

 

  
Figure 5. The normalization of the CurveA -The DCC function 

(dashed line), the DCC function approximated by 5 FCs (thin line), 

the normalized DCC function (thick line). 

 

6 Non-Fourier curve description 

A function )(rF  built on the base of the DCC 

function may be assigned to a closed curve. The value 

of the function F  at the point r  is equal to the total 

normalized length of all the arcs 
∩

21 ii PP  of the curve 

meeting the condition: for any point 
∩

∈ 21 ii PPP  its 

distance from the curve centroid CP  is less than r. 

)(rF  itself is invariant under affine transformations 

and does not require any normalization (Fig. 6). 
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Figure 6. Description of a closed curve in terms  of the )(rF  

function. 

 

It is easy to prove that the maximum value of the 

argument r  for a closed curve (of normalized length 

equal to 1) is 25.0 , as it is for a self-overlapping 

straight line. There exist many curves of the same 

function F . Exemplary curves of the same F  are 

shown in Fig. 7. Nonetheless, the preliminary studies 

show that the function may be successfully applied in 

mechanism synthesis.  

 
Figure 7. Two curves (I, II) of the same F -function which vary 

with the lines 1211PP   and 2221PP . The paths from the points 11P  

to 12P  and from 22P  to 21P  go along continuous (curve I) or 

dashed lines (curve II). 

 

For practical applications the function F  takes values 

in a discreet set of arguments. Then, the error between 

two curves 1,2 is expressed as follows: 
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The algorithm based on the F -function is applied 

in synthesis of the ellipsearc curve. It is taken 20=m  

in the objective function (23). The resultant curve 

fitted on the ellipsearc is shown in Fig.8. The 

parameters of the mechanism generating the curve 

are: 2l =13.804, 3l =1.3845, 4l =14.0369, 5l =14.5505, 

6l =3.4117, S3α =0.60711, 5α =6.17, 3ω =-2, 1ω =1. 

The error of the approximation 495375.0=FE . 



 
Figure 8. The arc of ellipse (dashed line - 0) and the curve 

generated by the mechanism  (continuous line - 1) . 

 

The paper presents the first trial of the application 

of the F -function as a curve descriptor. The results 

obtained encourage further studies in this area. 

 

7 Conclusions 

 The DCC method can be effectively applied in 

synthesis of complicated shapes, which is proved by 

the results of the synthesis of 2-DOF mechanism with 

nine optimized parameters. One can indicate some 

advantages over cumulative angle function and 

curvature, namely:  

• no mathematical requirements but the continuity 

of the curve make the methods suitable for the 

description of non-smooth curves with straight 

segments and vertices,  

• values of the DCC-function are limited, whereas 

in the case of curvature they may achieve high 

values,  

• the simplicity of the mathematical definition, 

• a small change in a shape results in a small 

change in the DCC function, 

• the fast and simple normalization, the function 

itself is sensitive to the mirror reflection and 

starting point change only.  

Moreover, the DCC function enables constructing 

the function invariant under affine transformations. 

The aim of the paper is to lay the foundations for 

further work. The problem can be extended by adding 

constraints on the admissible range of the 

transmission angle to minimize the forces transmitted 

by the links. 
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