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Abstract: This paper is concerned with robust stability analysis of discrete-
time systems. We first consider linear periodically time-varying (LPTV) nominal
systems, for which we apply the discrete-time lifting to have their equivalent
linear time-invariant (LTI) representations. Applying the conventional but general
scaling approach to the LTI representations leads to the notion of noncausal LPTV
scaling when the scaling is interpreted in the original time axis without lifting.
Regarding this discrete-time noncausal LPTV scaling, we confirm its effectiveness
over causal LPTV scaling and (causal) LTI scaling theoretically as well as with
a numerical example. We next consider LTI nominal systems, for which we again
apply noncausal LPTV scaling by regarding the LTI systems as a special case of
LPTV systems and thus applying the discrete-time lifting in the same way as in
the LPTV nominal systems. We then study the relationship of such an approach
with the conventional LTI scaling applied directly to the LTI nominal systems
without lifting treatment. In particular, we show that even static noncausal LPTV
scaling yields dynamic (frequency-dependent) LTI scaling if it is interpreted in the
context of lifting-free treatment, and an advantage of noncausal LPTV scaling for
LTI nominal systems is investigated from this viewpoint. A numerical example is
also provided that supports the advantage.
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1. INTRODUCTION

In the study of sampled-data systems, the continuous-
time lifting technique (Yamamoto, 1994) plays a
significant role. A lot of important studies on ro-
bust stability of sampled-data systems rely heav-
ily on this technique, which enables us to intro-
duce the transfer operator and frequency response
operator of sampled-data systems defined in an
operator theoretic framework. Based on such a
treatment, a general necessary and sufficient con-
dition of a separator-type was given for robust
stability of sampled-data systems (Hagiwara and
Tsuruguchi, 2004). By introducing a technique
that we call fast-lifting, this condition was fur-
ther generalized, and as a result, a novel tech-
nique called causal/noncausal linear periodically
time-varying (LPTV) scaling was introduced in
(Hagiwara and Mori, 2006; Hagiwara, 2006). It
has been demonstrated that causal/noncausal
LPTV scaling is quite effective in reducing the
conservativeness in the robust stability analysis of
sampled-data systems (Hagiwara and Mori, 2006;
Hagiwara, 2006), and as a special case of sampled-
data systems, the use of causal/noncausal LPTV

scaling on continuous-time systems has also been
discussed. An interesting result about the use
of noncausal LPTV scaling on continuous-time
systems is that even static noncausal scaling has
an ability of inducing some frequency-dependent
scaling when it is interpreted in the context of
conventional LTI scaling. Thus, it is an intriguing
question if noncausal LPTV scaling could become
a promising tool even in the robust stability anal-
ysis of continuous-time systems. However, due to
the use of an operator theoretic framework, it
seems a rather difficult question to tackle, and
it seems easier to study a similar problem in the
discrete-time context. This is the motivation of
the present study.

The contents of this paper are as follows. We
first state the robust stability analysis problem
of discrete-time systems in Section 2, and give a
fundamental method for dealing with such a prob-
lem via the discrete-time lifting technique. Based
on this method, we introduce in Section 3 the
notion of noncausal LPTV scaling in the discrete-
time context, and show that it is effective for
robust stability analysis of discrete-time systems



with LPTV nominal systems. In Section 4, we
consider the case with LTI nominal systems, and
give some results that suggest the effectiveness of
applying the discrete-time lifting even for robust
stability analysis of discrete-time LTI feedback
systems. A numerical example is also studied,
which demonstrates the above effectiveness. All
proofs are omitted due to limited space.

2. ROBUST STABILITY PROBLEM AND
PRELIMINARIES

2.1 Robust Stability Problem

Let us consider the discrete-time closed-loop sys-
tem shown in Fig. 1 consisting of the nominal
system G and the uncertainty ∆. G has q inputs
and p outputs and is an internally stable, finite-
dimensional (FD) linear periodically time-varying
(LPTV) system with period N (i.e., an N -periodic
system), where N is a positive integer. ∆ belongs
to some given set ∆ satisfying the assumption:

A1 Every ∆ ∈ ∆ is FD, N -periodic, and inter-
nally stable, and ∆ is a connected set such that
0 ∈∆.

As a special case of the above assumption, we also
prepare the following alternative assumption.

A1’ Every ∆ ∈ ∆ is FD, LTI, and internally
stable, and ∆ is a connected set such that 0 ∈∆.

G is also allowed to be LTI; when ∆ is N -periodic,
we view an LTI system G as a special case of N -
periodic systems. An LTI ∆ is treated similarly.
Hence we assume that G and ∆ are described by

xk+1 = Akxk + Bkuk, yk = Ckxk + Dkuk (1)
ξk+1 = A∆kξk + B∆kyk,−uk = C∆kξk + D∆kyk (2)

respectively, where the coefficient matrices are N -
periodic. We denote by Σ∆ the closed-loop system
shown in Fig. 1, and assume that Σ∆ is well-posed.
We define the family Σ(∆) := {Σ∆ |∆ ∈∆}.
2.2 Discrete-Time Lifting of N -Periodic Systems

The N -periodic system G can be associated with
its LTI representation via the discrete-time lifting
technique (Bittanti and Colaneri, 2000); by defin-
ing x̂ν := xνN , ûν := [uT

νN , uT
νN+1, · · · , uT

νN+N−1]
T

and ŷν := [yT
νN , yT

νN+1, · · · , yT
νN+N−1]

T , we have
an alternative representation of (1) given by

Ĝ : x̂ν+1 = Âx̂ν + B̂ûν , ŷν = Ĉx̂ν + D̂ûν (3)

with appropriately defined constant matrices Â,
B̂, Ĉ and D̂ that are independent of ν. G is
internally stable if and only if Â is Schur stable.
Similarly, the LTI representation of ∆ leads to
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y
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Fig. 1. Discrete-time system Σ∆ with uncertainty
∆.

∆̂ : ξ̂ν+1 = Â∆ξ̂ν + B̂∆ŷν ,−ûν = Ĉ∆ξ̂ν + D̂∆ŷν(4)

The feedback connection of the LTI systems Ĝ
and ∆̂ is well-posed, and it is internally stable if
and only if the system Σ∆ is.

In summary, the discrete-time lifting technique
allows us to convert the stability problem of
LPTV systems into that of LTI systems both in
the open-loop and closed-loop settings.

2.3 Stability Analysis via Separator
Let us introduce the discrete-time transfer matri-
ces of Ĝ and ∆̂, respectively, given by

Ĝ(z) = Ĉ(zI − Â)−1B̂ + D̂ (5)

∆̂(z) = Ĉ∆(zI − Â∆)−1B̂∆ + D̂∆ (6)

which we call the N -lifted transfer matrices of
the N -periodic systems G and ∆, respectively 1 .
Then, we can derive the following theorem re-
garding the robust stability analysis of the family
Σ(∆) (see also (Iwasaki and Hara, 1998)).

Theorem 1. Suppose that ∆ satisfies A1 (or A1’)
and Σ∆ is well-posed for every ∆ ∈ ∆. Then,
Σ(∆) is robustly stable if and only if there exists
Θ̂(z) = Θ̂(z)∗ for all z ∈ ∂D such that

[
I Ĝ(z)∗

]
Θ̂(z)

[
I

Ĝ(z)

]
≤ 0 (7)

[
−∆̂(z)∗ I

]
Θ̂(z)

[
−∆̂(z)

I

]
> 0 (∀∆ ∈∆) (8)

where ∂D denotes the unit circle {z : |z| = 1}.
The matrix Θ̂(z) contained in this theorem is
called a (dynamic) separator (Iwasaki and Hara,
1998). We say that Θ̂(z) is a static separator if it
is in fact independent of z.

3. NONCAUSAL LPTV SCALING FOR LPTV
NOMINAL SYSTEMS

This paper aims at investigating the use of the
discrete-time lifting technique in the robust sta-
bility analysis of LPTV (and LTI) systems. In
this section, we first introduce a natural notion
that accompanies such a treatment, which we call
noncausal LPTV scaling. We also introduce causal
LPTV scaling as a special case, and study their
mutual relationship as well as their relationship
to the conventional LTI scaling.

This section first introduces the notions of causal/
noncausal LPTV scaling and then demonstrate
their effectiveness when the nominal system G is
LPTV. The same technique can be applied to the
case when the nominal system G is LTI, and such
a case will be studied independently in Section 4.

1 We can view G as a µN -periodic system, where µ is a
positive integer. We then obtain another lifted representa-
tion and an associated transfer matrix, which will be called
the µN -lifted transfer matrix of the N -periodic system G.



3.1 Causal/Noncausal LPTV Scaling
Let us assume for the moment that G and ∆
are both square systems (i.e., p = q), and let us
consider a typical separator of the form

Θ̂(z) =

[
−γ2Ŵ (z)∗Ŵ (z) 0

0 Ŵ (z)∗Ŵ (z)

]
(9)

where Ŵ (z) is invertible for every z ∈ ∂D and γ is
a positive scalar. Then, (7) and (8) are equivalent
to the following conditions, respectively.

‖Ŵ (z)Ĝ(z)Ŵ (z)−1‖ ≤ γ (10)

‖Ŵ (z)∆̂(z)Ŵ (z)−1‖ < 1/γ (∀∆ ∈∆) (11)

That is, taking the separator (9) corresponds
to applying the small-gain condition scaled with
Ŵ (z). Suppose for simplicity the case when the
scaling factor is independent of z and is in fact
a constant matrix Ŵ . If we interpret the corre-
sponding scaling in the time domain (the time do-
main with respect to k in (1) and (2) rather than
that with respect to ν in (3) and (4)), it generally
leads to periodically time-varying scaling of the
systems G and ∆ with some noncausal operation
with respect to time k. In view of this observation,
we say that the separator (9) generally induces
noncausal scaling on LPTV systems G and ∆.

Here, it would be worth noting that every Ŵ ∗Ŵ
can also be represented as Ŵ ∗

0 Ŵ0 with some Ŵ0

with some special block lower triangular structure.
Hence, we can replace Ŵ in (10) and (11) with
Ŵ0. Since Ŵ−1

0 has the same structure as Ŵ0

and thus both Ŵ0 and Ŵ−1
0 conform to the

causality constraint with respect to the time axis
k, introducing the term “noncausal scaling” might
sound misleading. Thus, we might better use the
term like “lifted scaling” instead of “noncausal
scaling.” Nonetheless, we use the term “noncausal
scaling” in this paper partly because we would like
to make clear the connection of the arguments of
this paper to those in (Hagiwara and Mori, 2006;
Hagiwara, 2006) in the sampled-data/continuous-
time setting, by which this paper is strongly
motivated. We introduce a few special classes
of separators Θ̂(z) in the following, from which
the use of the term “noncausal scaling” will be
supported and validated further (see Remark 5).

This subsection aims at introducing the defi-
nitions of causal LPTV scaling and noncausal
LPTV scaling in general situations. We begin with
the following definition on causal LPTV scaling.

Definition 2. We say that the separator Θ̂(z) in-
duces causal LPTV scaling (or equivalently, Θ̂(z)
is a causal LPTV separator) in an N -periodic
feedback system if it can be represented as

Θ̂(z) =
[
V̂1(z) V̂2(z)

]∗
Λ̂

[
V̂1(z) V̂2(z)

]
(12)

where V̂1(z) and V̂2(z) are the N -lifted transfer
matrices of a causal N -periodic system V1 with

q input and a causal N -periodic system V2 with
p input, respectively, and Λ̂ = Λ̂∗ is a constant
matrix of the form Λ̂ = diag[Λ1, · · · ,ΛN ] with the
size of Λi being the same for all i = 1, · · · , N .
The arguments of this paper hold mutatis mu-
tandis even if Λ̂ in (12) is replaced by the N -
lifted transfer matrix Λ̂(z) of a causal N -periodic
system such that Λ̂(z)∗ = Λ̂(z). Since the essential
parts of the arguments remain the same, however,
we simply deal with the case of Λ̂(z) = Λ̂. Defini-
tion 2 applies also to the case with N = 1, i.e., an
LTI feedback system, when (12) reduces to
Θ(z) = V (z)∗ΛV (z), V (z) := [V1(z), V2(z)] (13)
with the transfer matrix V (z) of an LTI system
V with p + q inputs and a constant matrix Λ =
Λ∗. This would be worth calling a causal LTI
separator, which is nothing but the conventional
separator in the analysis of LTI feedback systems,
and is general enough in the sense that every
matrix Θ = Θ∗ can be represented as

Θ = V ∗ΛV, Λ = Λ∗ (14)
We believe that our Definition 2 gives a quite
natural extension of causal LTI separators to the
LPTV setting. We next introduce the following
definition of noncausal LPTV scaling.

Definition 3. We say that the separator Θ̂(z) in-
duces noncausal LPTV scaling (or equivalently,
Θ̂(z) is a noncausal LPTV separator) in an N -
periodic feedback system if it can be represented as

Θ̂(z) = Γ̃ ∗V̂ (z)∗Γ V̂ (z)Γ̃ (15)
where Γ = Γ ∗ and Γ̃ are constant matrices and
V̂ (z) is the transfer matrix of a causal LTI system
defined on the lifted time axis ν.

The arguments of this paper hold mutatis mutan-
dis even if Γ in (15) is replaced by Γ (z) = Γ (z)∗.

Remark 4. In the above definition, the matrix Γ̃
in (15) could in fact be removed since we could
redefine V̂ (z)Γ̃ as V̂ (z). However, we leave Γ̃ as
it is for some reasons; the details are omitted due
to limited space.

Remark 5. Regarding Ŵ0 that we discussed just
before Definition 2, we can see that the cor-
responding separator is indeed classified among
static noncausal LPTV separators, in general,
even if Ŵ0 has a block lower triangular form.
The noncausality can play a significant role in
reducing the conservativeness in the robust sta-
bility analysis (see Sections 3.2 and 4.3). As we
will see later, the effect of the noncausality can
also be interpreted equivalently as introducing
frequency-dependent scaling in the context of the
conventional lifting-free treatment of LTI systems.
This is an interesting phenomenon and will be
studied in Subsection 4.2.
Definition 3 also applies to the case with N = 1,
but (15) again reduces to the causal LTI separator
(13) when N = 1. Thus, there exists no (strictly)



“noncausal LTI separator,” and hence it would be
justified to refer to (13) simply as an LTI separator
rather than a causal LTI separator. Furthermore,
we can see that possible noncausality of separators
is a feature that is specific to the very treatment in
this paper in which the discrete-time lifting is em-
ployed. Note, however, that it does not necessarily
mean that noncausality of separators cannot be
exploited in the analysis of LTI feedback systems.
This is because we can always regard LTI systems
as a special case of N -periodic systems, and thus
we can apply noncausal LPTV separators by tak-
ing such a viewpoint. Such an approach is deferred
to Section 4.

3.2 Numerical Example with Causal/Noncausal
LPTV Scaling for LPTV Nominal G

We confine ourselves to the case with LPTV
nominal G and demonstrate the effectiveness of
causal/noncausal LPTV separators through a nu-
merical example; we study a numerical example
with the nominal system G being a stable 2-
periodic LPTV system given by

Ak =
[

0 I

0.1 aT
k

]
, (k = 1, 2) (16)

aT
1 = [0.1 1 −1 1.9], aT

2 = [−0.1 0.01 − 0.5 0.2](17)

B1 = B2 = e5, C1 =
[
0 0.6 0.6 1.5 0

]
, (18)

C2 =
[
0 0.3 0.3 0.3 0

]
, D1 = D2 = 0 (19)

Here we assume that ∆ is static, and consider the
two situations: (i) ∆ is a time-invariant scalar,
which we denote by δ; (ii) ∆ is also 2-periodic,
and thus takes δ1 and δ2 alternately. We intend
to analyze via LPTV scaling (a lower bound of)
the robust stability radius regarding each of these
uncertainties.

Let us consider the first situation, in which case
the lifting of ∆ with N = 2 leads to ∆̂ = δI with
I being the 2×2 identity matrix. For simplicity,
we confine ourselves to the separator of the form

Θ̂=

[
−γ2ŴT Ŵ 0

0 ŴT Ŵ

]
, ŴT Ŵ > 0, γ > 0(20)

that induces the so-called D-scaling. When Ŵ
is unstructured, this corresponds to using static
noncausal LPTV separators. Here, the minimiza-
tion of ‖Ŵ Ĝ(z)Ŵ−1‖∞ leads to γmin = 2.4455 =:
γnoncausal
min . Thus, we obtain 1/γnoncausal

min = 0.4089
as a lower bound with static noncausal LPTV
scaling. For reference, the l2-induced norm of G is
given by γ0 = 5.3114, and thus the conventional
small-gain approach leads to a lower bound of the
robust stability radius given by 1/γ0 = 0.1883,
which is quite conservative.

Next, let us consider the second situation. In this
case, it is reasonable to confine Ŵ in (20) to the
form Ŵ = diag[ŵ1, ŵ2] > 0 so that (8) reduces
to the Ŵ -independent condition max(|δ1|, |δ2|) <
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Fig. 2. Robust stability analysis for an LPTV
nominal system.

1/γ. Taking the above restricted form of Ŵ in
fact corresponds to employing static causal LPTV
separators. The minimization of ‖Ŵ Ĝ(z)Ŵ−1‖∞
under the restricted Ŵ leads to γmin = 3.4897 =:
γcausal
min , and thus we obtain 1/γcausal

min = 0.2866
as a lower bound of the robust stability radius
against static 2-periodic ∆. Obviously, the small-
gain approach can also be applied in this second
situation and leads to the same lower bound as in
the first situation, 1/γ0 = 0.1883, but this is again
quite conservative.

The above results together with the stability re-
gion in the (δ1, δ2) plane computed via fine grid-
ding are shown in Fig. 2; the unshaded region
corresponds to the stability region and the solid
line corresponds to the lower bound of the ro-
bust stability radius obtained by static noncausal
LPTV scaling assuming that ∆ is time-invariant,
while the dash square corresponds to the lower
bound obtained by static causal LPTV scaling
assuming that ∆ is 2-periodic, and the dash-dot
square corresponds to the lower bound obtained
by applying the conventional small-gain approach.

4. NONCAUSAL LPTV SCALING
APPLIED TO LTI NOMINAL SYSTEMS

In this section, we consider the special case in
which G is in fact LTI. In this case, we can drop
the subscript k from all the matrices in (1), and G
has the transfer matrix G(ζ) := C(ζI −A)−1B +
D. Note that the forward shift in time k is denoted
by ζ to distinguish from the symbol z.

If ∆ is also LTI, then we can also introduce the
associated transfer matrix ∆(ζ), and it is obvious
that we can arrive at the following theorem, which
is just parallel to Theorem 1.

Theorem 6. Suppose that G is LTI, ∆ satisfies
A1’ and Σ∆ is well-posed for every ∆ ∈∆. Then,
Σ(∆) is robustly stable if and only if there exists
Θ(ζ) = Θ(ζ)∗ for all ζ ∈ ∂D such that

[
I G(ζ)∗

]
Θ(ζ)

[
I

G(ζ)

]
≤ 0 (21)

[−∆(ζ)∗ I
]
Θ(ζ)

[−∆(ζ)
I

]
> 0 (∀∆ ∈∆) (22)



Now, regarding the robust stability analysis prob-
lem for an LTI system G under the Assump-
tion A1’, we have two options. One is the conven-
tional method, in which we apply the above Theo-
rem 6, while the other is to apply Theorem 1 using
the N -lifted transfer matrices associated with G
and ∆ viewed as N -periodic systems. The former
option corresponds to the use of the conventional
LTI separators while the latter corresponds to
using causal/noncausal LPTV separators. It is an
interesting topic to study the relationship between
these two options, or in other words, to clarify
which is more effective for robust stability analy-
sis. This section is devoted to such a study.

4.1 Construction of LPTV Separators from
Lifting-Free LTI Separators

Regarding the relationship between the two op-
tions for robust stability analysis with an LTI
nominal system stated just before, we have the
following fundamental result.

Theorem 7. Suppose that G is LTI, and ∆ sat-
isfies the Assumption A1’. If there exists an LTI
separator Θ(ζ) satisfying (21) and (22), then there
also exists a causal LPTV separator Θ̂(z) satisfy-
ing (7) and (8). In particular, if Θ(ζ) is in fact
a static LTI separator, there also exists a static
causal LPTV separator Θ̂(z) satisfying (7) and
(8).

Roughly speaking, the proof of the above theorem
says that if there exists an LTI separator that
“resolves” the original lifting-free robust stabil-
ity analysis problem, then the “lifted version” of
that separator is also causal and “resolves” the
lifted restatement of the same problem. This in
particular implies that we never lose anything in
recasting the lifting-free problem into the lifted
counterpart as far as the solvability issues of these
problems are concerned. This fact may not be sur-
prising, but this guarantee does support and sug-
gest to study possible advantages of treating the
lifted counterpart instead of the original lifting-
free problem. This is particularly because, in the
lifted counterpart, we can also consider noncausal
LPTV separators, and this is indeed the case even
when we confine ourselves to the simple class of
static separators (recall that we have seen the
effectiveness of static noncausal LPTV separators
in Section 3.2 for LPTV nominal systems). In
other words, it can be interpreted that the lifted
counterpart of the problem allows us to extend the
class of possible (tractable) separators even when
we confine ourselves to the class of, e.g., static sep-
arators. This could make the inequality (7) about
G easier to hold, while, more importantly, among
the extend class are a lot of separators that satisfy
the inequality (8) only for a smaller class of ∆.
For example, we can easily construct a noncausal
LPTV separator for which (8) holds for any norm-

bounded LTI ∆ but not necessarily for a norm-
bounded LPTV ∆ (see Section 3.2). This implies
that noncausal LPTV separators could possibly
reduce the conservativeness of the robust stability
analysis in the practical situation in which we
cannot sweep over all possible separators Θ(ζ) but
have to restrict the class of Θ(ζ) to a tractable
one, e.g., a class of static separators.

The following subsection studies possible advan-
tages of noncausal LPTV separators also from a
different viewpoint (i.e., a frequency-domain view-
point).

4.2 Implication of Noncausal LPTV Separators in
the Lifting-Free Treatment

We can show another relation between the two op-
tions stated before, which is given by the following
theorem.
Theorem 8. Suppose that G is LTI, and ∆ satis-
fies A1’. If there exists a separator Θ̂(z) satisfying
(7) and (8), then there also exists a separator Θ(ζ)
satisfying (21) and (22). One such Θ(ζ) is given
by

Θ(ζ) := diag[Tq(ζ), Tp(ζ)]∗Θ̂(ζN )diag[Tq(ζ), Tp(ζ)](23)

with Tm(ζ) := [Im, ζIm, · · · , ζN−1Im]T .

This theorem suggests that even a static non-
causal LPTV separator Θ̂(z) = Θ̂ in the lifted
treatment leads to Θ(ζ) corresponding to the
lifting-free treatment that is frequency-dependent
(i.e., depends on ζ ∈ ∂D). To put it another
way, the lifted treatment possibly has an ability
to convert the problem of searching for frequency-
dependent separators satisfying (21) and (22) in
the lifting-free treatment into a simpler problem
of finding a static separator satisfying (7) and (8).
Compared with static Θ , it is obvious that ζ-
dependent Θ has more freedom, and thus we could
expect the above ability to reduce the conserva-
tiveness in the robust stability analysis. The fol-
lowing subsection is devoted to examining if this
is indeed the case through a numerical example.
Before proceeding, however, we state the following
result, which implies that the above expectation
is denied for static causal LPTV separators.
Theorem 9. Suppose that G is LTI, and ∆ sat-
isfies A1’. There exists a static causal LPTV
separator Θ̂ satisfying (7) and (8) if and only if
there exists a static LTI separator Θ satisfying
(21) and (22).

4.3 Numerical Example with Causal/Noncausal
LPTV Scaling for LTI Nominal G

We study a numerical example with the nominal
system G being a stable LTI system given by

A =




0 1 0
0 0 1

−0.2 0.5 0.1


 , B =




0 0
0 1
1 0


 , (24)



C =
[

0 −1 0
0 0 1

]
, D =

[
0 0
0 0

]
(25)

Here we assume that ∆ is static and has a diag-
onal structure, and in particular consider the two
situations: (i) ∆ = δI with a time-invariant scalar
δ; (ii) ∆ = δI with an N -periodically time-varying
scalar δ that takes δi (i = 1, · · · , N) circularly. In
the first situation, we intend to examine an advan-
tage of introducing the lifted treatment together
with noncausal LPTV scaling to the robust sta-
bility analysis of LTI feedback systems. A relevant
problem is dealt with in the second situation.
In the first situation, we can consider the static
noncausal separator Θ̂ of the D-scaling type given
by (20) (i.e., without any structural constraint
on Ŵ ) after regarding the LTI feedback system
as a special case of N -periodic LPTV feedback
systems. We took N = 1, · · · , 5 in such a treat-
ment (where N = 1 corresponds to the con-
ventional lifting-free treatment) and computed
inf

Ŵ
‖Ŵ Ĝ(z)Ŵ−1‖∞ for each N . The results are

shown in Table 1, which clearly show the advan-
tage of applying the lifting approach 2 together
with static noncausal LPTV separators 3 . From
the result for N = 5 in Table 1, we have a lower
bound of the robust stability radius with respect
to time-invariant ∆ = δI given by 1/1.6533 =
0.6049.
In the second situation, on the other hand, it is
reasonable to confine Ŵ in (20) to a positive-
definite diagonal matrix of the form

Ŵ = diag[Ŵ1, · · · , ŴN ] (26)
with 2 × 2 positive-definite matrices Ŵi (i =
1, · · · , N), so that (8) reduces to the Ŵ -independent
condition max(|δ1|, · · · , |δN |) < 1/γ. Taking this
form of Ŵ in fact corresponds to employing static
causal LPTV separators. The minimization of
‖Ŵ Ĝ(z)Ŵ−1‖∞ under the restricted Ŵ led to
γcausal
min = 3.6215 (i.e., the same as the value for

N = 1 in Table 1) regardless of N , which is indeed
a consequence of Theorem 9. We thus have a lower
bound of the robust stability radius with respect
to N -periodic ∆ = δI given by 1/γcausal

min = 0.2761.
The above results are shown in Fig. 3 (for the
cases of time-invariant/2-periodic ∆ = δI) under
the same meaning for the solid, dash and dash-

Table 1. The results of static noncausal
LPTV scaling.

N 1 2 3 4 5

γnoncausal
min 3.6215 1.7918 1.7146 1.6674 1.6533

2 Note that this advantage in particular suggests a possible
advantage of considering the µN -lifted transfer matrix
(rather than the N -lifted transfer matrix) in the robust
stability analysis involving N -periodic systems.
3 As far as the D-scaling is concerned, however, it is not
hard to prove that noncausal LPTV separators lead to no
advantage over LTI separators if G and ∆ are both SISO
systems. This problem does not apply to (D, G)-scaling.
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Fig. 3. Robust stability analysis for an LTI nomi-
nal system.

dot lines as well as the shaded region; as for static
noncausal LPTV scaling, the figure corresponds to
the case of N = 5, and the (unscaled) H∞-norm
of G is γ0 = 4.7803 and thus the conventional
small-gain theorem (dash-dot line) leads only to
1/γ0 = 0.2092 as an estimate of the robust
stability radius. We can see that the result for
2-periodic ∆ is almost exact, while the result
for static ∆ is still conservative. However, we
have confirmed that applying static noncausal
LPTV scaling of the (D, G)-scaling type (instead
of the D-scaling type employed here) leads to an
almost exact robust stability radius 1/γnoncausal

min,DG =
1/1.0833 = 0.9231 (when N = 2) for static
∆ = δI, where fine gridding shows that stability
is retained under −0.9231 < δ < 1.5001. We
finally remark that in the lifting-free treatment
(i.e., N = 1), static (D, G)-scaling led to no
improvement over the D-scaling studied above.
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