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Abstract:1This paper deals with the stabilization of a 
class of discrete nonlinear models. The considered models 
are taken in the Takagi-Sugeno’s form with periodic 
parameters. The main goal of this paper is to reduce the 
conservatism of the stabilization conditions using a 
special class of candidate Lyapunov functions. 
 

I. Introduction 
 
Takagi-Sugeno models (Takagi and Sugeno 85) are 
strongly investigated for more than 10 years (Tanaka and 
Wang 2001, Sala et al. 2005 and references therein). This 
is surely because of the systematic ways both to derive 
them from a nonlinear model and to find stabilizing 
control laws including performances and/or robustness. 
From most of the affine in the control nonlinear models a 
Takagi-Sugeno representation (Taniguchi et al. 2001) 
usable for its control can be derived. Takagi-Sugeno 
models are composed by a given number of linear models 
blended together by nonlinear functions. The main 
property of these functions is the convex sum property. 
The main control law used is the PDC (Parallel 
Distributed Compensation). This control is based on the 
structure of the model, i.e. it is composed by linear state 
feedbacks blended together with the same nonlinear 
functions as in the model (Wang et al. 96).  
Making the assumption that the state is measurable and 
the nonlinear functions use measurable variables, through 
the direct Lyapunov method, it is easy to derive 
stabilization conditions in a LMI (Linear Matrix 
inequality) problem formulation (Tanaka et al 1998). 
These problems can be effectively solved with some 
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algorithms like the well-known interior point algorithm 
(Boyd et al. 94). 
As usual for nonlinear models, the obtained conditions are 
only sufficient ones. The problem remaining is to evaluate 
the degree of conservatism introduced by the method. 
First of all, there exist an infinite number of Takagi-
Sugeno (TS) models for a given nonlinear model. Then, 
the choice of the TS model can lead to unfeasible LMI 
problem even if theoretically there is a stabilizing control 
law. The second source of conservatism is the candidate 
Lyapunov function chosen. Generally, this function is the 
well-known quadratic one and the conservatism 
introduced in this case can be very important. At last, 
another source of conservatism is the way to tackle with 
multiple sum inequalities. For improvements in these 
different points the reader can refer to (Kruszewski et al. 
2005), (Rhee and Won 2006), (Liu et Zhang 2004), (Sala 
et al. 2005), (Tuan et al. 2001). 
The main point addressed in this paper is the choice of the 
candidate Lyapunov function. This is done in the discrete 
context and considering TS models with periodic 
parameters. 
As in most papers dealing with periodic models, we can 
use the periodic candidate Lyapunov function (Bolzern 
and Colaneri 1988). This Lyapunov considers some 
Lyapunov functions cycling through time. Using this 
approach with quadratic Lyapunov functions can give 
quickly better results than using simple Lyapunov 
functions but the conservatism is still important. 
Instead of using the classical quadratic function as a basis 
for the periodic one, we can consider more effective 
candidate Lyapunov functions like the nonquadratic ones 
proposed in (Guerra and Vermeiren 2004). The main idea 
is to define the Lyapunov function with the same structure 
as the model i.e. a set of quadratic function blended 
together by the same nonlinear functions as in the model. 



This extension seems to be straightforward and is not 
presented hereinafter.  
A new way to deal with these models is investigated 
through this work. The key point of the work is the use of 
Lyapunov functions that are taking into account the states 
at different samples. With k  the number of samples 
considered in the function, the stabilization conditions are 
derived using the k-sample variation method presented in 
(Kruszewski and Guerra 2005). These first results are 
presented part 2. 
The second result given uses a periodic Lyapunov 
function. Using the same key point as before, it can be 
shown that the results obtained are always better than 
using a periodic quadratic Lyapunov function.  
The paper is organized as follows. The first part gives 
some generalities about TS models and the hypothesis 
done. This part also introduces the notation. The second 
part introduces the k-sample variation method. An 
example is given to show the effectiveness of the 
approach and its limits. The third part proposes the 
second approach and an example is given for sake of 
comparison with the first one and classical results. The 
last section gives some conclusions 

II. TS models and Materials 
There exist a systematic way to go from an affine in the 
control nonlinear model to a Takagi-Sugeno model. This 
method is called sector nonlinearity approach (Tanaka 
and Wang 2001). The main property of this method is its 
ability to derive TS model equivalent to the considered 
nonlinear model in a compact set of the state space. 
 
Considering a nonlinear model given by the expression: 
( ) ( )( ) ( ) ( )( ) ( )1x t f z t x t g z t u t+ = +  (1) 

with ( )f ⋅  and ( )g ⋅  are nonlinear functions, ( )x t  the 

state, ( )u t  the input and ( )z t  a vector supposed 
measurable. 
 
We can derive a TS model given by: 

( ) ( )( ) ( ) ( )( )
1

1
r

i i i
i

x t h z t A x t B u t
=

+ = +∑  (2) 

Looking to the structure of the Takagi-Sugeno models (2), 
we can notice that it is composed of linear models 
( ),i iA B  blended together with nonlinear functions ( )ih ⋅  

sharing the convex sum property: ( )
1

1
r

ih ⋅ =∑ , 

( ) [ ]0 1ih ⋅ ∈ . The integer r  present in every sum 
represents the number of linear models used in the TS 
model. This number grows exponentially according to the 
number of nonlinearities taken into account in the 
considered nonlinear model (1) (Tanaka and Wang 2001).  
In the following the nonlinear model is supposed 
controllable and the linear models ( ),i iA B  too. 
 
In the literature, the main control law used is the PDC 
(Parallel Distributed Compensation). This control law is 

composed by several linear state feedback blended by the 
same nonlinear functions ( )ih ⋅  as in the model. Their 
expressions are given by: 

( ) ( )( ) ( )
1

r

i iu t h z t L x t= −∑  (3) 

Or equivalently introducing a free matrix G  

( ) ( )( ) ( )1

1

r

i iu t h z t FG x t−= −∑ . This last expression is 

useful to simplify the notation. 
 
In the following, the use of candidate Lyapunov function 
involving the state at different samples leads to complex 
expressions. 
To simplify the expressions, the sums are eliminated of 
them, using the following notations. Considering well 
defined matrices iY  and ( )ih ⋅  some function sharing the 
convex sum property, a single sum at time t  will be 

noted: ( ) ( )( )
1

r

z i itY h z t Y= ∑ . With ijY  some matrices of 

the same dimension, ( ) ( ),z t n z t nY + +
 represents a double sum 

considered at time t n+ : 

( ) ( ) ( )( ) ( )( ),
1 1

r r

i j ijz t n z t n
i j

Y h z t n h z t n Y+ +
= =

+ +∑∑  (4) 

By extension an expression involving n double sums at 
different times will be written as: ( ) ( ) ( ) ( ), 1 , , 1z t z t n z t z t nY + − + −… … . 
 
Using this notation, TS discrete model (2) can be written: 
( ) ( ) ( ) ( ) ( )1 z t z tx t A x t B u t+ = +  (5) 

 
As usual a star ( )*  in a bloc defined matrix stands for the 

transpose term. ( )* TA A B
B C B C

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
 with A, B and C 

some matrices of appropriate dimension. 
 
All the conditions obtained using the Lyapunov theory 
gives stabilization conditions in the form of matrix 
inequalities involving multiple sums, for example: 

( ) ( ) ( ) ( ), 1 , , 1 0z t z t n z t z t n+ − + −ϒ <… … . To derive LMI conditions, i.e. 

removing the nonlinear functions ( )ih ⋅ , several 
possibilities exist. Only one is investigated in this work, 
the other ways can be straightforwardly used. The one 
presented is an extension of the double sum case found in 
(Tuan et al. 2001). 
 
Lemma 1: The expression ( ) ( ) ( ) ( ), , 1 , , , 1z t z t k z t z t k+ − + −ϒ … …  with 

0 1 1 0 1 1,k ki i i j j j− −
ϒ  a symmetric matrix with the following 

structure: ( ) ( )
0 1 1 0 1 1 0 0 1 1

0 1
, , ,k k k k

k
i i i j j j i j i j− − − −

−ϒ ϒ + ϒ + + ϒ  is 
negative definite if the following inequalities hold:  

0 1 1 0 1 1, 0
k ki i i i i i− −

ϒ <  (6) 



0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1, , ,
2 0

1 k k k k k ki i i i i i i i i j j j j j j i i ir − − − − − −
ϒ + ϒ + ϒ <

−
 

0 1 0 1 1, , , , ,k kj j i i i− −≠  (7) 
 
Proof: it is direct considering (Tuan et al. 2001) work. 
 
Now, consider TS discrete models with periodic 
parameters. Their expressions are given by: 
( ) ( )

( ) ( ) ( )
( ) ( )1 c c

z t z tx t A x t B u t+ = + , modc t p= ,  (8) 
p  denotes the period and c  the period state. 

The control used for this kind of model is directly derived 
from the PDC control law and is given by: 

( ) ( )
( ) ( ) ( )

1c c
z tu t F G x t

−

= − , modc t p=  (9) 
 
The next theorem gives the results obtained using the 
following quadratic periodic Lyapunov function: 

( ) ( )( ) ( ) ( )( ) 1Tl l lT
lV x x G P G x

− −
= , { }0, , 1l p∈ −…  (10) 

 
Let define the following matrices: 

( ) ( )
( ) ( )

mod

1

*
0

l p
l
ij l l

ij

P

A +

⎡ ⎤−
ϒ = ⎢ ⎥ <

Θ⎢ ⎥⎣ ⎦
 (11) 

( ) ( ) ( ) ( ) ( )mod mod mod modl l p l p l p l p
ij i i jA A G B F−  
( ) ( )( ) ( )( ) ( )( )1 mod 1 mod 1 mod1

Tl p l p l pl G G P+ + ++Θ = − − +  
 
Theorem 1: Consider the matrices l

ijϒ  { }0, , 1l p∈ −… ,  
defined in (11). The model (8) together the control law (9) 
is globally asymptotically stable if there exits matrices 

( )lP , ( )lG  and iF , such that for { }0, , 1l p∈ −… :  

0l
iiϒ <  for { }1, ,i r∈ …  (12)  

2 0
1

l l l
ii ij jir

ϒ + ϒ + ϒ <
−

 for { }, 1, ,i j r∈ … , i j≠  (13) 

 
Proof: it is direct combining lemma 1 and results of 
(Guerra et Vermeiren 2004).  

III. First result 
In this section, the stability of the closed loop ((8) with 
(9)) is studied with the following candidate Lyapunov 
function: 

( )( ) ( ) ( )T
k k k kX t X t X t= ΠV  (14) 

With ( ) ( ) ( )1
TT T

kX t x t x t k⎡ ⎤= + −⎣ ⎦  and 

 

( ) ( ) ( )

( ) ( ) ( )

1

1

0 0 0

1 1 1

0
0

0

T

Tk k k

G P G

G P G

− −

− −− − −

⎡ ⎤
⎢ ⎥

= >⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Π . 

with ( )iP , { }0, , 1i k∈ −…  some positive definite matrices 

and ( )iG , { }0, , 1i k∈ −…  some full rank square matrices. 
 

The closed loop is stable if the k-sample variation of (14) 
is negative along its trajectories (Kruszewski and Guerra 
2005) i.e. ( )( ) ( )( ) 0k k k kX t k X t+ − <V V  (k is an 
arbitrary chosen integer). In that case, the analysis is 
reduced to the time t such that mod 0t k =  (Kruszewski 
2006).  
 
Proof: Assume that ( )( ) ( )( ) 0k k k kX t k X t+ − <V V  for 

all t such that mod 0t k = . So we have 
( )( )lim 0k kt

X t
→+∞

=V  for each t such that mod 0t k = . 

( )( )k kX tV  is a candidate Lyapunov function. This 

implies that ( )
mod 0

lim 0kt
t k

X t
→+∞

=

=  for each t such that 

mod 0t k =  or ( )
mod 0

lim 0
t
t k

x t i
→+∞

=

+ = , { }0, , 1i k∈ −… . This 

proves that the model is stable. 
 
The first version of the Finsler’s lemma is needed to 
derive the stabilization conditions (De Oliveira and 
Skelton 2001). 
 
Lemma 2: Consider a vector nx∈  and two matrices 

T n nQ Q ×= ∈  and m nR ×∈  such that ( )rank R n< . 
The two following expressions are equivalent: 
1. { }0 0, 0T nx Qx x x x Rx< ∀ ∈ ∈ ≠ =  (15) 

2. n mM ×∃ ∈  such that 0T TQ MR R M+ + <  (16) 
 
Consider the following TS discrete model: 
( ) ( )

( ) ( ) ( )
( ) ( )1 c c

z t z tx t A x t B u t+ = + , modc t p= ,  (17) 
the control law: 

( ) ( )
( ) ( ) ( )

1c c
z tu t F G x t

−

= − , modc t p=  (18) 
The goal is to find through a LMI formulation, the 
parameters of the control law ( ( )l

iF  and ( )lG  { }1, ,i r∈ … , 

{ }0, , 1l p∈ −… ) and the parameters of the Lyapunov 

function ( ( )lP , { }0, , 1l p∈ −… ) to ensure the closed loop 
stability. The closed loop can be written: 

( ) ( )
( )

( )
( )

( )
( ) ( )( ) ( )

1

1 c c c c
z t z t z tx t A B F G x t

−

+ = − , modc t p=  (19) 

(19) is stable if ( )( ) ( )( ) 0k k k kX t k X t+ − <V V . We 

choose k p= . 
This latter inequality can be written as: 

( ) ( ) ( ) ( ) 0T T
k k k kX t k X t k X t X t+ + − <Π Π  (20) 

Or ( ) ( )2 2

0
0

0
T

k kX t X t
−⎡ ⎤

<⎢ ⎥
⎣ ⎦

Π
Π

 (21) 

with ( ) ( ) ( )2 2 1
TT T

kX t x t x t k⎡ ⎤= + −⎣ ⎦ . 

 



In order to apply Finsler’s lemma, the following 
constraint: ( )2 0kRX t =  is defined. Considering the 
expression of the closed loop (19): 

( ) ( )
( )

( )
( )

( )
( ) ( )( ) ( )

( )
( )

( )
( )

( )
( ) ( )( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( )

1

1

1

1

1 0

0
1

c c c c
z t z t z t

c c c c
z t z t z t

c c
z t z t

x t A B F G x t

A B F G x t x t

x t
A G I

x t

−

−

−

+ = −

⇔ − − + =

⎡ ⎤⎡ ⎤⇔ − =⎢ ⎥⎢ ⎥⎣ ⎦ +⎣ ⎦

 

with ( ) ( )
( )

( )
( ) ( )

( )
( )

( )
( )c c c c c

z t z t z t z t z tA A G B F= −  

The extension of this expression to the vector ( )2kX t  is: 

( )2 0kRX t =  (22) 
with: 

( ) ( )
( ) ( )

( ) ( )
( )( ) ( )( )

1

1

mod mod

1 mod 1 mod
2 1 2 1

0 0

0
0

0 0

t p t p
z t z t

t k p t k p
z t k z t k

A G I

R

A G I

−

−
+ − + −
+ − + −

⎡ ⎤−
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦
 
Now using the fact that the analysis can be reduced to the 
time t such that mod 0t k =  ( k p= ). R can be written: 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1

1

0 0

1 1
2 1 2 1

0 0

0
0

0 0

z t z t

k k
z t k z t k

A G I

R

A G I

−

−− −
+ − + −

⎡ ⎤−
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

 (23) 
 
The following conditions of stability are obtained 
applying Finsler’s lemma: 

M∃  such that 0T TQ MR R M+ + <  (24) 
where R  is given in (23) and: 

0
0

Q
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Π
Π

 (25) 

Note that the condition (24) is nonlinear according to the 
decision variables. To avoid this usual problem (see for 
example in an LPV context (Ebihara et al. 2005)) a 
reduced form for the M  matrix must be chosen. In this 
case, we may loose the necessity of the condition. Thus, 
M  is set as: 

( )

( ) ( ) ( ) ( )( )
1 2 1

1 1 0 1

0
T T T T

k

k k
M

diag G G G G
− − − −

× −

− −

⎡ ⎤
⎢ ⎥= ⎡ ⎤⎢ ⎥

⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
then pre and post multiplying by the following full rank 
matrix: ( ) ( ) ( ) ( )( )0 1 0 1k kdiag G G G G− −⎡ ⎤

⎣ ⎦ . 

We get the LMI condition ( ) ( ) ( ) ( ), 1 , , 1 0z t z t k z t z t k+ − + −ϒ <… …  
with: 

( ) ( )
( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( )
( ) ( )

0 1 1 0 1 1

0 0

2 2

1 1

2 2 2 2

,

0

0 1

2 1

1 0

0 1

2 1

* 0 0

0 *

*

*

0

*

0 0

k k

k k

k k

k k

k k

i i i j j j

i j

k k
i j

k
i j

i j

k k
i j

P

A

A

A

A

A

− −

− −

− −

− −

− −

−

− −

ϒ =

⎡ ⎤−
⎢ ⎥

Φ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Φ⎢ ⎥
⎢ ⎥Θ⎢ ⎥
⎢ ⎥Θ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Θ⎣ ⎦
 (26) 

( ) ( ) ( ) ( ) ( )l l l l l
ij i i jA A G B F= − , ( ) ( ) ( ) ( )Tl l l lG G PΦ = − − −  and 
( ) ( ) ( ) ( )Tl l l lG G PΘ = − − + . 

 
Theorem 2: The closed loop composed by the periodic 
TS model (17) and the control law (18) is globally 
asymptotically stable if there exist some matrices ( )l

iF , 
( )lG  and ( ) 0lP >  { }1, ,i r∈ … , { }0, , 1l p∈ −…  such that 

the conditions (6) and (7) hold for 
0 1 1 0 1 1,k ki i i j j j− −

ϒ  defined 
in (26). 
 
Example: Considering the model (17) with the matrices 
given hereinafter there is no solution using the theorem 1 
conditions (classical result) but there is one with the 
theorem 2 conditions. This proves the interest of the 
approach. 

 1
1

1 1
0,5 1

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 1
2

1 10
0,5 1

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 2
1

1,5 1
0 0,5

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

2
2

1,5 10
0 0,5

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1 1
1 2

1
0

B B
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

 et 2 2
1 2

0
0

B B
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

 

Note that it exists opposite examples where only theorem 
1 conditions can find a solution to the stabilization 
problem of a periodic TS model. Next section gives 
another result ensuring the enhancement of the classical 
theory. 

IV. Second result 
The second idea is an improvement of the periodic 
Lyapunov functions. It uses another basis function which 
introduces the state at different times. The function used 
is: 

( )( ) ( ) ( ) ( )V ,
T l

k l k k kX t X t X t= Π  (27) 

( )

( )
( )
( ) ( )

( )( )
( )
( ) ( )( )

1

1

mod mod
0

1 mod 1 mod
1

0

T

T

l p l l p

l

k l p k l pl
k

G P G

G P G

− −

− −
− + − +

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= >
⎢ ⎥
⎢ ⎥
⎣ ⎦

Π , 

{ }0, , 1l p∈ −… . 
 
The closed loop (19) is stable if the following inequality 
holds along its trajectories: 



( )( ) ( )( ) ( )( ) ( )( )0 1 1 01 1pV x t V x t V x t t V x t p−> + > > + − > +…  
Using the same proof scheme we get the following 
theorem. 
 
Theorem 3: The closed loop composed by the model (17) 
and the control law (18) is globally asymptotically stable 
for a given k  if there exist some matrices ( )l

iF , ( )lG   and 
( ) 0l
jP >  { }1, ,i r∈ … , { }0, , 1l p∈ −… , { }0, , 1j k∈ −…  

such that the conditions (6) and (7) hold for 

0 1 1 0 1 1,k k

l
i i i j j j− −

ϒ  { }0, , 1l p∈ −… , defined by: 

( )
( ) ( )
( ) ( )

( )
( ) ( ) ( )

( )

0 0

0 1 1 0 1 1

2 2

1 1

mod
0

, 0

,

2 2
, 2

1
,

* 0 0

0 * 0

*

0 0

k k

k k

k k

l p

l l
i j

l
i i i j j j

l k l k
i j k

l k
i j

P

A

A

A

− −

− −

− −

+ − + −
−

+ −

⎡ ⎤−
⎢ ⎥
⎢ ⎥Ω
⎢ ⎥

ϒ = ⎢ ⎥
⎢ ⎥

Ω⎢ ⎥
⎢ ⎥

Ω⎢ ⎥⎣ ⎦

 

 (28) 
with ( ) ( ) ( ) ( ) ( )mod mod mod modl l p l p l p l p

ij i i jA A G B F= − ,  
( ) ( )( ) ( )( )

( )
( )( )

( )
( )1 mod 1 mod 1 mod mod

1

Tl p l p l pl l p
i i iG G P P+ + +

+Ω = − − + −  

and ( )( ) ( )( )
( )
( )( )mod mod 1 mod

1

Tl k p l k p l p
kG G P+ + +
−Ω = − − + . 

 

V. Discussion and conclusion 
 
Using the same proof as in (Kruszewski and Guerra 2005) 
it can be proven that there exists a partial order relation 
between the conditions involving different k  values. The 
bigger k  is, the less conservative are the conditions (and 
more complex). This result is given in the following 
lemma: 
 
Lemma 3: If there exit some matrices ( )l

iF , ( )lG  and 
( ) 0l
jP >  { }1, ,i r∈ … , { }0, , 1l p∈ −… , { }0, , 1j k∈ −…  

such that the conditions of the theorem 3 are fulfilled for a 
given k m= , *m∈  then they are also fulfilled for all 
k m l= × , *l∈ . 
 
Remark: In this theorem, the parameter k  allows 
choosing the ratio complexity/conservatism of the 
conditions. The number of LMI conditions obtained 
depends exponentially according to k . For high values of 
k  (more than 10) the obtained LMI problem can be 
inconsistent for actual LMI solvers (it depends also on the 
size of the state, the number of linear models …). 
 
Examples: 
To illustrate the different approaches, we consider the 
three following cases. The first and the second ones show 
the fact that the sets of results of each method only 
overlap, i.e. no inclusion can be derived. Effectively first 
example shows a big improvement of the second 

approach results in comparison with the first one and the 
second example shows exactly the opposite. The last 
example illustrates the interest of increasing the parameter 
k . 
 
Consider the TS model (17) and the matrices with a∈ : 

1
1

1,5 10
0 0.5

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 1
2

0.5 10
0 0

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 2
1

1 1
0 0,5

a
A

+⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

2
2

1 10
0 0.5

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1 1
1 2

0
0

B B
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

 et 2 2
1 2

1
0

B B
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

a∈  

the first approach gives solutions for  [ ]1.66 0.3a∈ − −  
and the second approach (with 2k = ) for 

[ ]250 250a∈ − . Note that the solution set of the second 
is larger than the solution set of the first one (more than 
300 times). 
 
Now consider the following matrices with a∈ : 

1
1

1 1
1

A
a
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1
2

1 10
1

A
a
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 2
1

1,5 1
0 0,5

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

2
2

1,5 10
0 0,5

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 1 1
1 2

1
0

B B ⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
 and 2 2

1 2

0
0

B B ⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
. 

According to a∈ , the first approach gives solutions for  
[ ]255 254a∈ − −  and the second approach (with 2k = ) 

for [ ]0.22 0.22a∈ − . Note that the solution set of the 
first is larger than the solution set of the second one (more 
than 500 times). 
 
The last example uses the following parameters: 

1
1

2 1
0 0.5

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 1
2

1.5 10
0.2 0.5

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 2
1

1 1
0 1

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

2
2

1 10
0 1

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1 1
1 2

1
0

B B
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

 et 2 2
1 2

0
0

B B
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

. 

No solution is obtained using the classical periodic 
Lyapunov function (approach 2 with 1k = ) but the 
approach 2 with 2k =  gives one. 
 
Regarding these examples, it is not possible to conclude 
on a “best” approach. Both of them must be tested and the 
results compared. At last, the open question to be solved 
is: what is a (the?) good value of the parameter k ? 
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