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A NEW MODEL FOR COMPLEX DYNAMICS
IN A DC GLOW DISCHARGE TUBE
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Abstract
Based on a detailed experimental characterization of

the complex dynamics of a Ne discharge tube, a new
phenomenological model governed by four differential
equations is proposed. Such a model takes into account
the competition between a nonlinear relaxation oscilla-
tor related with external electronic features and a forced
harmonic oscillator accounting for the plasma eigen-
frequency. From their interaction the quasi periodic-
ity route to chaos emerges as confirmed by the exper-
imental observations. In the control parameter space,
stability diagrams for periodic oscillations of arbitrary
period are computed using the isospike technique and
compared with standard diagrams of Lyapunov expo-
nents. Such diagrams reveal complex patterns of sta-
bility phases with extended regions of multistabilty.
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1 Introduction
Complex chaotic dynamics of glow discharge plasma

tubes has been the subject of numerous works and
much is known about them [Braun, Lisboa, Francke,
and Gallas, 1987][Ticos, Rosa, Pardo, Walkenstein,
and Monti, 2000][Dinklage, Wilke, Bonhomme, and
Atipo, 2000][Letellier, Dinklage, El-Naggar, Wilke,
and Bonhomme, 2001]. This problem was first con-
sidered by van der Pol studying a relaxation oscillator
consisting of a neon tube, connected to an RC circuit
and exited by means of a battery [van der Pol and van
der Mark, 1928]. Relaxation oscillators are of fun-
damental importance in biological systems including
heartbeats, respiration, walking and hormone secretion
[Wang, 2003] [Buzsáki, 2006].

Here a novel approach has been followed in explor-
ing the dynamical behavior of a Ne plasma tube in
the region of glow discharge. We consider the macro-
scopic volt-ampere characteristic of the discharge, re-
garding the whole plasma simply as a nonlinear two
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Figure 1. Experimental setup. The discharge tube is shown as a
red element. Vbias, adjustable high voltage power supply; Rb =
150 kΩ, ballast resistor; Rl = 1 kΩ, load resistor; C =
2.4 nF , capacitor.

terminal electrical component. Such an approach re-
moves dependencies from charge spatial distribution
and reduces the mathematical description to a nonlin-
ear set of two coupled ordinary differential equations.
The experimentally observed chaotic behavior induce
us to introduce an additional oscillator associated with
the plasma eigenfrequencies [Piel, 2010]. The model,
governed by four autonomous differential equations, is
used to compute stability diagrams for periodic oscilla-
tions of arbitrary period in the control parameter space
of the discharge. Isospike contour plots [Freire and
Gallas, 2011] and standard Lyapunov exponents have
been evaluated revealing intricate mosaics of stability
domains and multistability regions.

2 Experiment
The experimental setup is reported in Fig.1. The main

element is a plasma tube, having a length of 50 cm
and an internal diameter of 2.5 cm, filled with neon at
low pressure. Such a device is of the type commonly
used in commercial neon signs and other applications
and presents identical electrodes that can be used as an-
ode and cathode indifferently. An adjustable high volt-
age dc source, indicated as Vbias, allows us to excite
and drive the tube in the glow discharge operation re-
gion. The Vbias plays the role of control parameter. The
range of interest for Vbias is 730 V < Vbias < 2000 V .
Two distinct signals were recorded, the discharge volt-
age across the tube and the corresponding light emis-
sion. The last one is proportional to current flowing in
the tube. The bifurcation diagram as function of Vbias

is shown in Fig.2. This graph is obtained extracting
the maxima values of recorded light signals when the
capacitance C is set at 2.4 nF .
The onset of the glow dynamics is characterized by a
period-1 solution (Vbias ≃ 730 V ) at a frequency of
670 Hz, meaning that we are dealing with a stationary
regime characterized only by the relaxation frequency
imposed by the external RC coupling. A slight in-
crease of Vbias leads to the appearance of another fre-

Figure 2. Experimental bifurcation diagram. Light intensity max-
ima versus Vbias.

quency competing with the previous one. Such a fre-
quency is the plasma eigenfrequency. From the non-
linear interaction between them a first region of chaos
emerges followed by other extended periodic windows
of period-2 solutions. After that large chaotic windows
appear.
For the selected value of the capacitance C the ratio of
the two competing frequencies is close to two but irra-
tional. For this reason, the underlying route to chaos is
the quasiperiodicy and not the period doubling as sug-
gested in the bifurcation diagram. A more clear evi-
dence of the transition to chaos is given by plotting the
temporal behavior of light intensity (see Fig.3).
The nature of the transition to chaos was more clearly
manifested when the capacitance C is increased to
4.8 nF . In such a case the ratio between the two com-
peting frequency is around 1.13, the bifurcation dia-
grams do not show evidence of period-2 solutions and
period doubling bifurcations [Pugliese, Meucci, Euz-
zor, Freire, and Gallas, 2015].

3 Model
The starting point to experimentally derive a phe-

nomenological and macroscopic model of the dis-
charge plasma is provided by the Kirchoffs laws ap-
plied to the circuit of Fig.1. Denoting by vt and i2 the
discharge voltage and the current through the tube re-
spectively, we derive the following equations

i = i1 + i2 (1)

i1 = C
dvt
dt

(2)

i1 + i2 =
Vbias − vt

Rb
(3)

dvt
dt

=
1

RbC

(
Vbias − vt −Rbi2

)
(4)

L
di2
dt

= vt −G(i2) (5)
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Figure 3. Temporal evolution of the light intensity for three values
of the control parameter Vbias. (a) Vbias = 730 V , periodic
behavior of the relaxation oscillator; (b) Vbias = 1000 V , two
frequency periodic regime; (c) Vbias = 1550 V , spike amplitude
chaotic regime.

where we introduced the inductance L accounting
for a real inductive effect [Raizer, Gurevich, and
Mokrov,2006] and the voltage-current characteristic
G(i2) of the tube. Proceeding with the dimensionless
variables introduced in Ref. [Pugliese, Meucci, Euzzor,
Freire, and Gallas, 2015], the dynamics of the relax-

ation oscillator is described by

ẏ = A0 −A1y −A2x (6)
µẋ = y − g(x) (7)

where g(x) is the dimensionless characteristic curve
with the following mathematical form

g(x) = yc + ae−k1·x − (yc + a)e−k2·x (8)

(a)

(b)

(c)

Figure 4. Numerical results obtained using the model defined by
Eqs. (11)–(14). (a) bifurcation diagram of local maxima of x for
γ = 4.2 and ω varying in the interval [6,7]; (b) isospike diagram
counting the number of spikes in one period of the variable x; (c) the
corresponding standard Lyapunov stability diagram.

As experimentally observed, the dynamics of the re-
laxation oscillator is strongly influenced by an intrinsic
plasma oscillation. Such oscillation is taken into ac-
count by introducing a damped oscillator driven by the
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discharge current x as follows

z̈ + βż + ω2z = γx (9)

where ω is the angular eigenfrequency. The new vari-
able z introduces a modulation of the working point on
the characteristic curve g(x) of Eq. 8. This assump-
tion is justified by the temporal behavior in the chaotic
regime where the spikes are only characterized by their
different amplitudes and not by the time of their occur-
rences. The actual electric characteristic is now given
by

g(x, z) = yc+(a+z)e−k1·x−(yc+a+z)e−k2·x (10)

where the parameters yc, a, k1 and k2 are fixed by fit-
ting the experimental data.
The complete model used to describe the dynamics is
given by following set of first order differential equa-
tions

ẋ =
1

µ
(y − g(x, z)) (11)

ẏ = A0 −A1y −A2x (12)
ż = w (13)
ẇ = −βw − ω2z + γx (14)

The numerical bifurcation diagram, reported in Fig.
4 (a) shows a fair overall agreement with the experi-
mental one. The model was also used to compute the
stability diagrams using the isospike technique [Freire
and Gallas, 2011] (b) and the Lyapunov exponents (c).
The isospike diagram shows, for every point of the con-
trol parameter space, the number of spikes contained in
one period of the regular oscillations. Each color cor-
responds to stable solutions of the x variable with a
certain number of spikes per period. Black color repre-
sents chaos, i.e., parameters for which it was not possi-
ble to detect periodicity.

4 Conclusion
In this paper, we reported an experimental study of

a low pressure Ne discharge tube showing evidence
of chaos via quasiperiodicity. An accurate electrical
and dynamical characterization allows to derive a phe-
nomenological model able to reproduce the interaction
between a relaxation oscillator and an intrinsic plasma
oscillator. By computing the stability diagrams we
characterized the complex organization of the stable so-
lutions and the transition to chaos.
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