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Abstract
Radionuclide diagnostics requires the use of mathe-

matical methods of processing and analysis of data ob-
tained during the investigation. One of the main steps
of data processing is region of interest (ROI) contour
detection. In this paper the algorithm based on the
optical flow method is considered. Radionuclide im-
ages are mainly noisy and non-smooth, that is why pre-
sented method requires pre-processing data using fil-
ters. The paper presents an example of using the pro-
posed method for contour detection of the left ventricle
(LV) in radionuclide cardiac research.
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1 Introduction
Radionuclide diagnostics is the functional diagnos-

tics of human diseases based on the registration of
radioactive emissions from radiopharmaceuticals ab-
sorbed by examined organ [Grebenshikov and Kotina,
2007]. This area is actively developed today that
makes creation of new mathematical models and al-
gorithms for data processing actual [Balykina, Kolpak
and Kotina, 2014; Kotina, 2012; Kotina and Ploskikh,
2012; Kotina, Ploskikh and Babin, 2013; Ostroumov
et al., 2010]. Gamma-camera and gamma-tomograph
are used for radionuclide emission registration and im-
age acquisition [Arlychev et al., 2009]. In this pa-
per the problem of detecting region of interest (ROI)
contour is considered. During the process of radionu-
clide studies the motion of studying organs takes place.
We present approach based on the concept of the op-
tical flow [Anandan, 1989; Barron and Fleet, 1994;
Horn and Schunck, 1981; Ovsyannikov and Kotina,
2012; Papenberg, 2006] in terms of processing ra-
dionuclide images. Here the optical flow is meant as
two-dimensional velocity field describing displacement

Figure 1. The distribution of radiopharmaceutical in cardiology re-
search.

of image points, which occurs while represented ob-
jects moving relative to the detector of gamma-camera
[Kotina and Pasechnaya, 2013].

2 Problem Statement
We consider image sequences obtained in dynamic

data acquisition mode. This mode allow to observe
the distribution of indicator (radiopharmaceutical) in
studying organism system depending on time and spa-
tial coordinates (Figure 1). As a result we obtain ra-
diopharmaceutical density distribution ρ = ρ(t, x, y),
t ∈ [0, T ], (x, y) ∈ D, or using discretization we
have the sequence of matrices ρ1(i, j), ρ2(i, j), . . . ,
ρT (i, j), i, j = 0, . . . , n+ 1.
Let us suppose that we acquire sequence of radionu-

clide images, where the motion of examined organ oc-
curs. The problem is to detect region of interest (ROI)
contour on every image, i.e. in different moments of
time.

3 Optical Flow Based Approach
So we consider the obtained image sequence of mov-

ing organ. Determining velocity field of ROI motion
we construct its contour. With the aim of doing it in
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this section optical flow based approach is presented.
Proposing procedure involves solving special sparse
linear system by iterative method. The convergence of
this method is investigated.

3.1 Velocity Field Determining
To determine velocity field of region of interest (ROI)

contours we propose optical flow based approach.
Let us consider system of differential equations

ẋ = u(t, x, y),

ẏ = v(t, x, y).
(1)

Here x and y – spatial coordinates, t – time, functions
u and v define velocity field.
We assume that the density distribution of radiophar-

maceuticals along the trajectories of the system (1) re-
mains constant

ρt + ρxu+ ρyv = 0. (2)

here ρt, ρx, ρy – partial derivatives of radiopharma-
ceutical density distribution with respect to x, y and t,
(u, v)T = f – velocity field of the system (1).
Taking into account the above model (1), we consider

the inverse problem of determining the velocity field,
which in general is ill-posed. It can be solved using
regularization method. According to it we fix some
moment of time t and compose integral functional

J(u, v) =

∫
M

(φ2 + α2ψ2)dxdy. (3)

where φ2 = (ρt+ρxu+ρyv)
2, ψ2 = u2x+u

2
y+v

2
x+v

2
y,

α2 – regularization parameter, M – region of non-zero
measure from R2.
Then we minimize functional (3), using following sys-

tem of Euler-Lagrange equations:

−α2∆u+ ρ2xu+ ρxρyv = −ρtρx,
−α2∆v + ρ2yv + ρxρyu = −ρtρy.

(4)

Here ∆ – Laplace operator, ∆u = ∂2u
∂x2 +

∂2u
∂y2 and ∆v =

∂2v
∂x2 + ∂2v

∂y2 .
This approach reduces the problem of determining ve-

locity field of system (1) to solving the system of dif-
ferential equations in partial derivatives of second order
with the appropriate boundary conditions.
Discrete nature of measurements allows us to consider

radiopharmaceutical density distribution at the inter-
section ith row, jth column and in the kth moment of
time as ρk(i, j), i, j = 1, . . . , n as it was said below.
Therefore the solution of system (4) can be considered
at the nodes of a square grid with a step equal to the one

pixel change in the distance along any axis. In the grid
point (i, j) the approximation to the solution of system
(4) can be written as u(i, j), v(i, j).
Laplacians in (4) then will be changed with finite dif-

ferences and partial derivatives will be calculated using
the density values in the neighboring grid points. So
we obtain linear system of difference equations



−α2(u(i− 1, j) + u(i+ 1, j) + u(i, j − 1)+

+u(i, j + 1)) + +(4α2 + ρ2x(i, j))u(i, j)+

+ρx(i, j)ρy(i, j)v(i, j) = −ρx(i, j)ρt(i, j),
−α2(v(i− 1, j) + v(i+ 1, j) + v(i, j − 1)+

+v(i, j + 1)) + +(4α2 + ρ2y(i, j))v(i, j)+

+ρx(i, j)ρy(i, j)u(i, j) = −ρy(i, j)ρt(i, j).
i, j = 1, . . . , n.

(5)

Functions u and v are defined on the boundary of
the region, therefore in this system only 2n2 variables
u(i, j), v(i, j), i, j = 1, . . . , n, at interior points of the
grid are unknown.
System (5) can be expressed as a system with large

sparse matrix

(
A B
B C

)(
u
v

)
=

(
d
e

)
, (6)

where u = (u1, . . . , un2)T = (u11, . . . , u1n, u21, . . . ,
u2n, . . . , un1, . . . , unn)

T , v = (v1, . . . , vn2)T =
= (v11, . . . , v1n, v21, . . . , v2n, . . . , vn1, . . . , vnn)

T ;
d = (d1, . . . , dn2)T = (d11, . . . , d1n, d21, . . . ,
d2n, . . . , dn1, . . . , dnn)

T , e = (e1, . . . , en2)T = (e11,
. . . , e1n, e21, . . . , e2n, . . . , en1, . . . , enn)

T .

Matrices A,C – sparse and differ only with diago-
nal elements, i.e. asr = csr and nonzero of them
asr = csr = −α2. Diagonal elements of matrix
A: ass = 4α2 + ρ2x(i, j), matrix C: css = 4α2 +
ρ2y(i, j), i, j = 1, n, s = 1, n2. Matrix B – diagonal,
i.e. bsr = 0, s, r = 1, n2, bss = ρx(i, j)ρy(i, j).
Moreover for system (6): di,j = −ρx(i, j)ρt(i, j),
ei,j = −ρy(i, j)ρt(i, j), i, j = 1, n.

Renaming variables, we reduce the system (6) to a
form suitable for further processing

Hz = q, (7)

Matrix H is block, with second order blocks. Let us
rewrite it as it follows

H = D − E − F, (8)

matrix D – diagonal, E and F – lower triangular and
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upper triangular matrices, respectively.

D =


H11 0 · · · 0
0 H22 · · · 0
...

...
. . .

...
0 · · · 0 Hn2n2

 ,

E + F = −


0 H12 · · · H1n2

H21 0 · · · H2n2

...
...

. . .
...

Hn21 · · · Hn2,n2−1 0

 .

System (7) with matrix in the form (8) is suitable for
using Gauss-Seidel block iterative method:

Hssz
k+1
s = −

n2∑
r<s

Hsrz
k+1
r −

n2∑
r>s

Hsrz
k
r + qs, (9)

s = 1, . . . , n2, k = 0, 1, 2, . . . ,

3.2 The Convergence of Block Iterative Method
The convergence of Gauss-Seidel block iterative

method (9) in the case when matrix B is diagonal and
matricesA,C are sparse and differs only with diagonal
elements can be shown, using the conditions obtained
in [Kotina, 2012]:

1)asscss − b2ss > 0, ass > 0, css > 0,

s = 1, n2,

2)
ass + css

2
≥

n2∑
r=1,r ̸=s

∥asr∥+

+

√(
ass − css

2

)2

+ b2ss, s = 1, n2

and for some s
ass + css

2
>

n2∑
r=1,r ̸=s

∥asr∥+

+

√(
ass − css

2

)2

+ b2ss,

3)”block” irreducible condition.

(10)

It is easy to check conditions (10) are performed for
matrix H from (7) and then block iterative method of
Gauss-Seidel (9) converges for any initial approxima-
tion to the unique solution of system.

4 Contour Detection Algorithm
Based on the above, we propose contour detection al-

gorithm (Figure 2).

Figure 2. Block-scheme of contour detection algorithm.

a) b)

Figure 3. a) First image with contoured region of interest (ROI). b)
Velocity field of contour points.

Step 1. To improve image quality before processing fil-
ters should be applied. Suppression of image noisiness
can be realized applying smoothness operation. In this
paper low-frequency spatial filtering with 3x3 mask is
used.
Step 2. Set manually or automatically the region of
interest (ROI) contour on the first image (Figure 3a))
[Gonzalez and Woods, 2005; Kotina, 2013].
Step 3. Determine the velocity field of contour points
using optical flow based approach (Figure 3b)).
Step 4. According to obtained velocity field receive
points of new contour – region of interest (ROI) con-
tour on the second image.
Step 5. Using second contour and proposed algorithm,
detect contour on the next image. Do it for all sequence
images.

5 Example of Using the Proposed Algorithm
The proposed algorithm can be used for region of

interest (ROI) contour detection for medical imaging.
Here we present as an example planar radionuclide
study of the heart – equilibrium electrocardiography-
gated cardiac blood pool scanning (GBP) performed
by gamma-camera [Canclini et al., 2001]. GBP can
be used to evaluate left ventricular function. It requires
contouring of the left ventricle (LV) on all images ob-
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Figure 4. Images of cardiology research with countered heart left
ventricle (LV).

tained at different time intervals of the representative
cardiac cycle [Kotina, 2013]. It is generally considered
16 – 32 such images. This method proved to be sen-
sitive to changes in the contours on radionuclide im-
ages. Assuming that on the first image left ventricle
(LV) is contoured manually or with known method, we
detect contours on other images applying the presented
method. The obtained result is shown in the Figure 4.

6 Conclusion
Optical flow-based approach can be applied for con-

tour detection on different radionuclide images. It can
be also used for motion correction [Kotina and Max-
imov, 2011; Ovsyannikov, Kotina, and Shirokolobov,
2014] for radionuclide studies as well as for plan-
ning radiation therapy [Elizarova, Ovsyannikov and
Cheremisin, 2007].
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