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Abstract 
The aim of this work is to apply a new nonlinear 

observer in order to estimate the trajectories of an 

oscillatory continuous chemostat model. The local 

observability test and the observer convergence proof 

are presented as well as numerical simulations shows 

the observer performance.  
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1 Introduction 

The biological systems (commonly nonlinear) are well 

known for its complexity and variety, a large number 

of these systems are bounded in bio-reactors for 

biotechnology purposes such as the production of 

antibiotics, vaccines, food, contaminant removal, etc 

(Krylov & Zaikov, 2006; Liese, Seelbach, & 

Wandrey, 2006). By which the monitoring and 

process control is indispensable in order to achieve a 

high and safely production, even more when the 

system exhibits oscillatory dynamic, hysteresis or 

chaos (Ajbar, 2001; Angeli, Ferrell, & Sontag, 2004; 

D. Dochain, 2008). 

 

One of the main tasks in bio-reactor control is the 

biomass monitoring, which is the biological catalyst of 

the system; this is due to the lack of reliable sensors 

for measurement the concentration of biomass (Bastin 

& Dochain, 1990; Denis Dochain, 2010). A solution 

to the previous problem is the estimation of the 

biomass concentration by state observers, the 

development of new observers has been the focus in 

many researches because the nonlinear estimation 

theory is still incomplete, so a variety of approaches 

and methods have been proposed to tackle the 

nonlinear observer design (Aguilar-Lopez, Mata-

Machuca, & Martinez-Guerra, 2010; Ahrens & Khalil, 

2009; Alvarez-Ramirez & Morales, 2000; Biagiola & 

Figueroa, 2004; Ciccarella, Dallamora, & Germani, 

1993; Edwards, Spurgeon, Tan, & Patel, 2007; 

Gauthier, Hammouri, & Othman, 1992; Ibrir, 2006; 

MartinezGuerra & deLeonMorales, 1996; Tornambe, 

1992; Weiwen & Zhiqiang, 2003; Zhu, 2012). 

 

The simplest model of bio-reactor is the chemostat, is 

an important laboratory apparatus used to culture 

microorganisms(Fu & Ma, 2006). It is an open system 

where the substrate is input continuously for the 

biomass growth, the residual substrate and a fraction 

of the biomass generated are drawn off continuously, 

the inlet and outlet flow is the same. The chemostat 

model only is constituted for a general biomass and 

substrate balance (Dong & Ma, 2013). This model has 

been very helpful to explain systems stability, 

observability, control and bifurcation theory in 

bioprocesses (Ajbar & Alhumaizi, 2012).  

 

For the above reasons, the chemostat model is 

employed in this work to prove the performance of a 

new nonlinear observer where the biomass 

concentration is difficult, slow or expensive to 

measure or at worst unmeasurable.  

 

2 Biological model study case 
The biological model taken as study case is the 

classical chemostat, and is as follows: 

 

-Substrate mass balance 

 
  

  
          

      

      
 (1) 

 

-Biomass mass balance 

 
  

  
           (2) 

 

Where: D is the dilution rate (h
-1

);        is the 

biomass yield (Kgbiomass KgCMC
-1

); Sin is the feed 

concentration, in this case Carboxymethylcellulose 



 

 

(CMC) (Kg m
-3

), S is the substrate concentration in 

the reaction mixture (Kg m
-3

); X is the biomass 

concentration (Kg m
-3

); the kinetic reaction      was 

taken from a previous work developed by (Agarwal, 

Mahanty, & Dasu, 2009); this deals with the 

hydrolysis of CMC by Cellulomonas cellulans in a 

culture presenting substrate inhibition.  
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Equation (3) presents the kinetic reaction (Aiba´s 

model), where     , is a constant that means the 

maximal specific growth rate (h
-1

);    describes the 

overall affinity of an organism for its growth limiting 

substrate (Kg m
-3

) and    is the substrate 

concentration at which the microorganism growth is 

inhibited (Kg m
-3

). Equation (4) shows the biomass-

substrate yield as a nonlinear function of the CMC 

(logistic model). Table 1 shows the values of 

parameters used in the chemostat model (Agarwal, et 

al., 2009). 

 

Table 1. Model parameters 

Parameter Value 

     0.383 

   3.69 

   6.569 

  0.965 

  2.83 

  0.514 

 

3 Framework 

As a theoretical framework, let us consider an affine 

nonlinear system configuration, given as follows:  

 

                (1) 

           (2) 

 

where      denotes the state vector, taking values 

in X as a connected manifold of dimension n,      

denotes the vector of known external inputs, taking 

values in some open subset U, and      denotes 

the vector of measured outputs taking values in some 

open subset Y. Function f will be assumed to be C
∞
 of 

their arguments, and input functions u(º) to be locally 

and essentially bounded and measurable functions in a 

set U.  

 

Let us consider the following specific nonlinear 

representation of the system (1-2) with linear 

measured output: 

 

                          (3) 

               (4) 

 

Where      is the state vector,              

is a nonlinear smooth vector function,   

            is the control input,           
              , g0 is the control input coefficient, 

   is the additive uncertainty or the control input and 

          is the input disturbance vector. 

 

Now, considering that         and j(x)d are 

unknown, the following change of variable is 

proposed: 

 

                   (5) 

 

Therefore the following extended system is 

considered: 

 

               (6) 

                (7) 

 

Where             is an unknown vector field 

which is assumed that satisfies a Lipschitz condition, 

respect to the vector x, i. e. 

 
                               (8) 

 

And considering that         

 

As above mentioned, for control purposes, it is needed 

an estimation of the uncertain term ω in order to made 

the considered control realizable, therefore the 

following uncertainty observer is proposed. 

 

Proposition 1: 

The following dynamical system is an asymptotic 

observer for the system (6-7) 

 

                            
           

   

               (9) 

 

Considering the following assumptions: 

 

ω is observable on        
Ki is selected in accordance with the following Ricatti 

algebraic equation, which has a symmetric and 

positive definite solution P for some  > 0. 

 

(L-K1C)TP+P(L-K1C)+L2PPI+I = 0 (10) 

 

Ki is selected such that λmin(PKiC) ≥ 0 

 

Where an alternative representation of the proposed 

observer is given by the following extended state 

system: 

 

                              
    (11) 

                     
      (12) 

 

Defining the estimation error as: 

 

ξT = (ξx, ξω)    (13) 

 

 



 

 

Where: 

 

              (14) 

              (15) 

 

Therefore the corresponding dynamic equation of the 

estimation error is: 

 

                      
     

         (16) 

                               
    (17) 

 

Sketch of proof of Proposition 1 

Now, let us to consider the following Lyapunov 

function candidates: 

 

V = V1 + V2    (18) 

     
        (19) 

   
 

 
  
     (20) 

 

Where 0 < P = P
T 

Now,        
       

       (21) 

 

      
                           

     

           
          

 
     (20) 

 

Considering the Lipschitz condition: 

 

   
             

        
     (21) 

 

Applying the Rayleigh inequality and considering H3 

 

   
                       

   (22) 

 

Therefore: 

 

                                  

       
                  

  
     (23) 

 

          
         

                  
    

    

     (24) 

Taking into account that: 

 
      

                  
    

     (25) 

 

Furthermore, if the state estimation error remains 

small enough, then: 

 

                 
                  

  
       

     (26) 

 

And: 

 

          
        (27) 

 

Now: 

 

                                        
    

      (28) 

              
              

      (29) 

                                
     (30) 

                                  
      (31) 

 

Considering that:             
     ; and: 

 

       
                

        (32) 

 

Therefore: 

 

                         (33) 

 

Such that     is negative on the set       

         
 

   
  

From the above, can be concluded that: 

 

            (34) 

 

4 Numerical Results 

The numerical simulations were made with the 

Matlab® ode23s routine. A previously observability 

matrix rank test (see (Aguilar-Lopez, et al., 2010; 

Hespanha, 2009) was applied to the chemostat model, 

the results are showed below:  

 

Firstly, a linearized version of the chemostat system 

(Equations (1-2)) is presented in Equation (35): 

 

   
   

                           

       
  

    

      

            
 (35) 

 

Where: 

          
   

 

  
 

 

    
  

  
   

    
        (36) 

 

        
 

            
          (37) 

 

Equations (36) and (37) represent the first derivate 

respect to substrate for the kinetic growth model and 

the biomass-substrate yield model, respectively. 

 

Considering the CMC as the measurable output ( ), 

 

    
 
 
 
 
,  

 

The observability matrix (   ) is presented in 

Equation (38) 

 

     

   

   
                         

       
  

    

      
  

 (38) 

 

The Observability matrix rank is 2, hence the system 

is observable, addition to this, the determinant (   ) 

of Equation (38) was calculated in Equation (39): 

 

          
    

 
          (39) 

 



 

 

The         , reveals that the system is observable 

for any operation condition in which the growth rate is 

different to zero, it means whereas there are living 

cells.  

 

The performance of proposed observer was compared 

with a Luenberger observer. It was considered the 

CMC concentration as the measurable output. The 

initial conditions were [   =8 kg m
-3

, D=0.08 h
-1

, Xi= 

1.44 kg m
-3

, Si= 0.1 kg m
-3

] and [   =8 kg m
-3

, D=0.08 

h
-1

, Xi = 3 kg m
-3

, Si = 1 kg m
-3

] for the plant (real 

dynamic) and both observers respectively. The gains 

employed were: g1Luenberger=[0.1; -0.035]; 

g1sProposed=[0.1; -0.035];  g2sProposed=[0.001; -0.00035]; 

g3sProposed=[2; -0.7]. It was considered a modeling 

error of 20% in the kinetic constants of Aiba´s model. 

 

Figure 1 shows the time series of CMC for the plant 

and both observers. The observers began at the same 

initial conditions that are different to that used in the 

nominal model. The estimated dynamic given by the 

proposed observer is synchronized rapidly with the 

real dynamic, in contrast to the Luenberger observer 

that is incapable of achieve the real dynamic. 

 

 
Figure 1. Real and estimated dynamics for CMC 

concentration. 
 

Figure 2 shows the real and estimated CMC dynamics, 

it can be noted that the proposed observer presents an 

overshot that diminishes gradually and about the 50 h 

it overlapped with the real trajectory, in contrast, the 

Luenberger observer shows a slight overshot and in 

less time achieves the real trajectory (25 h 

approximately) but it is only temporally because near 

the 40 h this moves away from the real trajectory and 

never converge again.  

 

 
Figure 2. Real and estimated dynamics for biomass 

concentration. 

 

Figure 3 shows a visualization of the real and 

estimated trajectories as a 3D phase portrait, where the 

differences between the proposed and the Luenberger 

observers are more evident, in particular it should be 

noted the fast and accurate convergence of the 

proposed observer. 

 

 
Figure 3. Phase portrait-time with the real an estimated 

trajectories of the chemostat model. 
 

Finally, the Figure 4 shows the dynamic estimation 

error for biomass and CMC, as expected the error is 

closer to zero with the proposed observer compared to 

the Luenberger observer. 

 

 
Figure 4. Biomass and substrate estimation errors for the 

proposed and Luenberger observers. 

 

5 Conclusions 

The proposed observer is successful in estimating the 

dynamics of the chemostat model in spite of being 

considered with modeling errors that commonly 

occurs in biological systems, as demonstrated by 

numerical simulation, furthermore, it was compared 

with a Luenberger observer in order to demonstrate 

that a better performance can be achieved. 
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