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Abstract 

We consider second order linear resonant filter 
inserted in the negative feedback loop of the chaotic 
two-well oscillator for stabilizing unstable periodic 
orbit. Experiments have been performed with an 
electrical circuit, imitating dynamical behaviour of the 
two-well nonautonomous chaotic oscillator. 
Stabilization of periodic oscillations can be achieved 
with small control force. Mathematical model based 
on a two-well piecewise parabolic potential is 
discussed and numerical simulations are presented. 
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1 Introduction 
One of the most successful chaos control techniques 

is the time-continuous delayed feedback control 
(DFC) method [Pyragas, 1992; Pyragas and 
Tamaševičius, 1993], also known as Pyragas’ method. 
The DFC method and his extensions have been 
applied to many dynamical systems, including 
electrical circuits [Pyragas and Tamaševičius, 1993; 
Kittel et al. 1994; Gauthier et al., 1994; Celka, 1994], 
laser [Bielawski, Derozier and Glorieux, 1994], 
mechanical [Hikihara and Kawagoshi, 1996], and 
chemical [Parmananda et al., 1999] systems. The 
method has been introduced in the review papers 
[Namajūnas, Pyragas and Tamaševičius, 1996; 
Pyragas, 2006], journal theme issue [Lenci and Rega, 
2006], and handbooks [Schuster, 1999; Schöll and 
Schuster, 2008]. Practical implementation of the DFC 
method requires a delay unit in the feedback loop. At 
high frequencies (gigahertz range) the delay unit is 
simply a short segment of either coaxial transmission 
cable or a micro-strip line. However at lower 
frequencies (megahertz and kilohertz ranges) the 
delay unit appears to be rather complicated and 
inconvenient device. 

In this paper, we describe an extremely simple 

technique for controlling unstable periodic orbits 
embedded in chaotic systems. The basic idea behind 
the method is to use a resonant negative feedback 
(RNF) with the resonator tuned to the main frequency 
of the unstable orbit. As a result the negative feedback 
damps all the oscillations except the desired periodic 
orbit. We consider a two-well nonautonomous chaotic 
oscillator and employ a second order LC filter 
somewhat similarly to the recently described 
technique for synchronization of simple periodic 
oscillators [Pyragienė et al., 2007]. 
 

2 Experimental setup 
The idea of the technique is sketched in Fig. 1. 

 

 
 

Figure 1. Block diagram of the control technique. 
 

The full circuit diagram is shown in Fig. 2. The 
subcircuit, composed of the operational amplifier 
OA1, the R-L-C tank, the resistors R1-R3 and the 
diodes D1-D2, is a two-well nonautonomous chaotic 
oscillator, already employed to test the unstable 
version of the DFC method developed for stabilizing 
torsion-free periodic orbit [Tamaševičius et al., 
2007a]. Actually, it is a simplified version of the 
Young-Silva chaotic circuit [Lai et al., 2005], 
described and characterized in more details elsewhere 
[Tamaševičiūtė et al., 2008a]. 

The rest of the circuit in Fig. 2 is the controller. 
The OA2 based stage is a differentiator. Given the 
input of the differentiator is the voltage across the 
capacitor C, i.e. Vin = VC,  



 
 
Figure 2. Circuit diagram of the two-well oscillator 
with the RNF controller in the feedback loop. ω = 2πf. 
The S is an electronic switch. 

 
the output of the differentiator is 
 

dt
dVCRV C**

0 −=   (1) 

 
On the other hand the current through capacitor C is 
just the current through inductor L: 
 

L
C I

dt
dVC =    (2) 

 
Combining (1) and (2) we obtain 
 

LI
LC
CRV ρ

**

0 −= ,  (3) 

 
where CL=ρ . It is convenient to set the values of 

R* and/or C* so, that LCCR =** . 
The basic element of the controller is the linear 

resonator r-L1-C1. It is a notch filter with the 
frequency 111 21 CLf π=  (Fig. 3) tuned to the main 
harmonic of the unstable periodic orbit. We note, that 
the latter value is defined not by the fundamental 
frequency of the chaotic oscillator LCf π210 = , 
but by the external drive frequency .2πω=f  
Finally, the OA3 stage is an adder. 

 

 
 

Figure 3. Transfer function H of the linear resonator. 
L1 = 47 mH, C1 = 240 nF, r = 1 Ω (f1 = 1.5 kHz). 

3 Experimental results 
The following circuit values have been used in the 

experiment: L = 19 mH, C = 470 nF (f0 = 1.7 kHz), 
R = 20 Ω, r = 1 Ω, R1 = R2 = R3 = 10 kΩ, R4 =R5 =  
1 kΩ, R6 = 510 Ω. The below photos demonstrate the 
free running and the controlled oscillator. 
 

 
 

 
 
Figure 4. Phase portraits. (top) without control, 
(bottom) under control. A = 200 mV, f1 = f = 1.5 kHz. 
 

 
 

 
 
Figure 5. Stroboscopic maps (Poincaré sections). (top 
without control, (bottom) under control. Parameters 
are in Fig. 3. 
 

 
 
Figure 6. Experimental waveforms. Upper trace is the 
output signal VC(t) and lower trace is the control 
signal taken across resistor R6. Fine vertical line in 
the photo divides the regions, where control is off and 
control is on. Parameters are in Fig. 3. 



The closed loop in Fig. 4(bottom) and the single dot 
in Fig. 5(bottom) do confirm that the RNF method 
successfully stabilizes period-1 orbit. A snapshot of 
the typical waveform including transient process is 
presented in Fig. 6. 
 

4 Mathematical model 
Using the Kirchhoff’s laws the following equations 

are obtained for the nonautonomous two-well 
oscillator 
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where tARRRRE ωsin))((~

4512= . If R2 = R1, 

R5 = R4, then tAE ωsin~ = . The term f(VC) can be 
approximated by a piecewise linear function 
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Here k0 = R2/R1+1, and V* is the forward voltage drop 
across the opened diodes (about 0.5 V for silicon 
diodes at 0.1 mA). It is convenient to set R2 = R1 in 
order to have k0 = 2. Then merging in Eq. (4) the 
terms ‘−VC’ and f(VC) we obtain the full restoring 
nonlinear force: 
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The differentiator has been discussed in the previous 

section; a simple algebraic relation gives the 
output LIV ρ−=0 . The r-L1-C1 resonator is described 
by the following second order linear set: 
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When the feedback loop is closed the system is 

given by 
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where the feedback force F = V0−VC1 = −ρIL−VC1. By 
introducing the following dimensionless variables and 

parameters 
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we come to the following compact set of equations, 
convenient for numerical integration: 
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Here the coupling coefficients, k and k1 may be 
different. The term (y+x1) ∝ F, the dimensionless 
nonlinear function N(x) and the corresponding 
to dxdWxN −=)(  potential W(x) are presented by 
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It is a two-well potential with maximum Wmax = 0 at x 
= 0 and two minima Wmin = −1 at x0 = ±2. 
 

5 Numerical results 
Numerical results obtained from Eq. (10) using the 

program Mathematica are shown in Figs. 7-9.  
 

 
 

 
 
Figure 7. Phase portraits from Eq. (10). (top) without 
control, k = k1 =0, (bottom) under control, k = 1, 
k1= 0.5. Other parameter values: a = 0.4, b = 0.1, 
b1 = 0.01, Ω = Ω1 = 0.9. 



 
 

 
 
Figure 8. Poincaré sections from Eq. (10). (top) 
without control, (bottom) under control. Parameters 
are the same as in Fig. 7. 
 

 
 

Figure 9. Waveforms from Eq. (10). Parameters are 
the same as in Fig. 7. Control is activated at the time 
moment t = 300. The lower trace for kF = k(y + x1) is 
intentionally shifted by value −4. 
 

In addition, to characterize the performance of the 
RNF control method quantitatively the Lyapunov 
exponents have been calculated as a function of the 
control coefficient k from Eq. (10) and the leading one 
is presented in Fig. 10. While stabilization is observed 
at k > 0.7 the fastest control of period-1 orbit is 
achieved at k ≈ 1. 
 

 
Figure 10. Leading Lyapunov exponent λ versus the 
control coefficient k from Eq. (10). k1 = 0.5k. Other 
parameters are the same as in Fig. 7. 
 

6 Concluding remarks 
As mentioned in the Introduction the RNF method 

has been recently successfully applied to extend the 
region of synchronization of two simple periodic 
oscillators [Pyragienė et al., 2007]. In the present 

paper, we have described a similar RNF analogue 
controller and have applied it to stabilize unstable 
periodic orbit in a chaotic electronic circuit. Since the 
controller includes the second order filter we can 
specify the technique as the RNF2 method. In contrast 
to the DFC method the residual control force kF in the 
RNF2 method does not vanish. However it appears to 
be rather small (about 10% compared to the main 
signal). In the RNF2 method only the first harmonic 
of the stabilized periodic orbit remains unchanged, 
but its higher harmonics may be slightly affected. 
Detailed numerical and experimental analysis (not 
discussed in the previous sections) shows that the 
main component of the control force is just the second 
harmonic. Therefore the RNF2 controller can be 
easily upgraded to RNF4 or RNF6 controller by 
inserting in the feedback loop an additional second 
order resonator(s) with the resonance frequency twice 
(and thrice) higher as of the main resonator 
[Tamaševičiūtė et al., 2008b]. 

A related mathematical model, specifically the 
classical nonautonomous Duffing-Holmes equation 
with continuous nonlinearity 
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has been considered in [Tamaševičius et al., 2007b]. 
The corresponding continuous potential is 
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The model in [Tamaševičius et al., 2007b] exhibits 
similar results, however for the experimental system 
in Fig. 2 the piecewise linear and the piecewise 
parabolic functions given by (11) and (12) are more 
suitable. 

The RNF2 technique is similar in a sense to the 
notch filter feedback (NFF) method [Ahlborn and 
Parlitz, 2006]. The notch filter described by Ahlborn 
and Parlitz is a Wien-bridge. The circuit is an active 
one and can be implemented by means of two RC 
chains and an amplifier. Moreover, hardware 
implementation of the NFF technique requires an 
additional inverter and an adder to construct the 
control signal as the difference of the input and the 
output signals of the Wien-bridge. Therefore, 
practical circuits appear rather complicated. In 
contrast, the RNF method uses simply a passive 
second order LC filter inserted in the negative 
feedback loop. In addition, the LC filter is easier to 
tune, than the Wien-bridge based controller. 
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