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Abstract
We discuss nonlinear mechanical systems containing

several oscillators whose frequecies are all much higher
than frequencies associated with the remaining degrees
of freedom. In this situation a near constant of the
motion, an adiabatic invariant, exists which is the sum
of all the oscillator actions. The phenomenon is illus-
trated, and calculations of the small change of the adi-
abatic invariant is outlined.
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1 Introduction
In a mechanical system with n degrees of freedom,

where m of the degrees of freedom are associated with
oscillatory modes whose characteristic time scale is
much shorter than the characteristic time scale associ-
ated with the remaining n−m degrees of freedom, the
sum of actions from all the m oscillatory modes forms
an adiabatic invariant (see, e.g., [1]) of the system, its
value evolving only exponentially slowly.
This is a nontrivial sum because the individual oscilla-

tor action are not adiabatically invariant, its invariance
broken by resonance with the other high-frequency
oscillators. We discuss two examples of this phe-
nomenon. In section 2, a model 1-dimensional gas of
mutually interacting diatomic molecules whose vibra-
tional time scale is much shorter than the time scale
associated with the collisions between the molecules;
and in section 3 a three-dimensional gas of charged
particles moving in a magnetic field so strong that the
Larmor period of the charged particles is much shorter
that the time scale for collisions along the field lines.
In both systems there is a thus a separation between
the oscillator time scale and the time scale associated
with the remaining degrees of freedom. In both systems
one finds that the many-body sum of actions is adia-
batically invariant, exponentially well preserved by the
interactions. The greater the time scale separation, the

more the high-frequency oscillators together will con-
spire to effectivly decouple themselves from the rest
of the system, leaving the low frequency components
to evolve on their own. Finally, section 4 will outline
some analytical estimates of the decoupling.

2 Diatomic molecules
Consider a classical mechanical model of a one–

dimensional gas consisting of n identical diatomic
molecules. See figure 1.

Figure 1. Several diatomic molecules move in 1 dimension and in-
teract with long-range forces between the all the mass points.

Denoting by x = (x1, . . . , xn) and p = (p1, . . . , pn)
the canonical variables of the centers of mass of the
molecules, and by ξ = (ξ1, . . . , ξn), π = (π1, . . . , πn)
the (Cartesian) canonical variables describing the in-
ternal vibrations, the Hamiltonian has the overall form
[3]:

H(x, p, ξ, π) = Htr(p) +Hvib(ξ, π) + Vint(x, ξ) ,(1)

with

Htr =
n∑
i=1

(
p2
i

2m
+ U(ri)

)
, Hvib =

n∑
i=1

(
π2
i

2µ
+
µω2ξ2

i

2

)

and

Vint =
n−1∑
i=1

V (ri, ξi, ξi+1) ,

where m and µ denote respectively the total mass and
the reduced mass of the molecules, while ω denotes



the frequency of vibration for a single molecule, and
ri = xi+1 − xi − l, with l the proper length of the
molecule; the separation between U and V is estab-
lished by requiring V (r, 0, 0) = 0. Both U and V
are assumed to be smooth functions and to vanish for
r → ∞. The Hamiltonian Htr describes a gas of
perfectly rigid molecules, with pairwise interaction de-
scribed by the potential U ; as is natural, U(r) will be
assumed to diverge for r → 0. The gas is assumed to
be diluted, so that Vint is small compared to Htr and
Hvib.
A similar model was considered in 1903 by Jeans [6],

in the investigation of the time scale of the approach to
equilibrium between translational and vibrational de-
grees of freedom in diatomic gases. The basic idea
of Jeans (following Boltzmann) was that energy ex-
changes among the translational degrees of freedom, as
well as among the vibrational degrees of freedom, are
easy, so that, the two sub–systems described byHtr and
by Hvib separately reach their thermodynamical equi-
librium, with temperatures Ttr and Tvib not necessarily
equal; whereas collisional energy exchanges between
Htr and Hvib, in case of large ω, are exponentially
small, so that an effective “freezing out” of the vibra-
tional energy for quite large times (“billions of years”,
in the words by Jeans!) is expected to occur, if ω is suf-
ficiently large. 1 The conclusion by Jeans was that, in
principle, the experimentally observed ‘freezing’ phe-
nomena of various kind could be explained classically,
without Planck’s quantization. Jeans conjectured, and
supported heuristically, an exponential law for the col-
lisional transfer of energyE0 between translational and
vibrational modes in a single binary collision to be of
the form

E0 ≈ E0e−τ0ω ,

where E0 is a typical microscopic energy, while the
(crucial) constant τ0 represents some time scale asso-
ciated to the translational motion. Here, unfortunately,
Jeans was not really precise, though he qualitatively
identifies τ0 with the typical duration of the collision
process. The conclusion is that in typical conditionsE0

is negligibly small, and long–time freezing out occurs.
Today we model molecular collisions by quantum me-

chanics and the ‘freezing out’ of vibrational degrees
of freedom is seen as a manifestation of the quantized
energy levels and the inability of collisional energies
to excite the molecules away from their vibrational
ground state.

3 Charged particles in strong magnetic field
Consider a particle of mass m = 1 and charge e = 1

moving in R3. A homogeneous magnetic field B =
Bez acts on the particle. Denote by A = A(r) the

1This idea was stressed by Jeans in his book on gas theory, [7],
but only up to the second edition (1916), see chapter XVI. In the next
edition edition (1920) the chapter was removed.

magnetic vector potential at the point r, so that B =
curl A. It is natural to take A as A = 1

2B × r, but
the vector potential can be taken as any representative
from an equivalence class of potentials that differ by the
gradient of some scalar field, see [8]. The Hamiltonian
for the system is:

H =
(p−A(r))2

2
,

Note that we can write down the Hamiltonian function
in this vector form without specifying any particular
set of phase space coordinates. The motion of the sin-
gle particle is integrable, and, for the above choice of
direction of the magnetic field, consists of uniform cir-
cular motion (around the ‘guiding center’) with angular
frequency Ωc ≡ B (the cyclotron frequency) in the xy-
plane (perpendicular to the z-direction), and free iner-
tial drift in the z-direction.
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Figure 2. The coordinates

We shall employ here a particular set of coordinates
for the perpendicular directions. These (canonical) co-
ordinates (Θ, pΘ, ψ, pψ) are defined such that the an-
gle Θ and its associated momentum pΘ specify the po-
lar coordinates for the guiding center, and the angle ψ
and its associated momentum pψ specify the polar co-
ordinates for the particle position relative to the guiding
center and the direction given by Θ. See figure 2.
In terms of these polar guiding center coordinates, the

single particle Hamiltonian is simply

H = Ωcpψ +
p2
z

2
,

which manifestly is integrable. If we perturb H to
a slow spatial or temporal variation of, say, the mag-
netic field, the quantity pψ will be adiabatically invari-
ant [1], and the motion of the single particle will such
that the value of this phase space function is approxi-
mately conserved.
For two interacting particles moving in the homoge-

neous magnetic field, one can separate the (now 6 de-



gree of freedom) problem

H =
(p1 −A(r1))2

2
+

(p2 −A(r2))2

2
+

1
| r1 − r2 |

,

by introducing, as in the celestial mechanics two-body
problem, relative and center-of-mass frames r ≡ r1 −
r2, and R ≡ 1

2 (r1 + r2). In terms of these vectors,

H = HCM +Hrel ≡ (P−A)2

2
+

(p− a)2

2
+

1
| r |

,

where A = A(r1) + A(r2) and a = 1
2 (A(r1) −

A(r2)). The center-of-mass dynamics decouples com-
pletely, reducing the problem to one of single particle
motion. Thus, the nontrivial dynamics takes place only
in the relative coordinates. The relative Hamiltonian
Hrel describes (as in celestial mechanics) the colli-
sion of a single particle with another particle held fixed
at the origin of the coordinate frame. Using the po-
lar guiding-center coordinates (Θ, pΘ, ψ, pψ) defined
above, Hrel takes the coordinate form

Hrel = Ωcpψ +
p2
z

2m
+

1√
ρ2 + z2

,

where

ρ2 =
4pΘ

Ωc
+

8
Ωc

√
pψ(pΘ − pψ) cosψ

specifies the xy-radial position of the guiding center of
the moving particle.
We now introduce the criterion for strong magnetiza-

tion. We say the magnetic field is strong, when the
initial values of the z-velocity, and the value of Ωc re-
spectively, are such that the cyclotron period 2π/Ωc is
much shorter than the duration of one collision (this du-
ration is taken to be the distance of closests approach
divided by the z-velocity). The criterion simply states
that the moving particle completes many cyclotron or-
bits during its collision with the charge fixed at the ori-
gin, or equivalently, that the interaction with the field
of the fixed particle is a slow perturbation. The total
perpendicular kinetic energy

E⊥ = Ωcpψ = Ecm⊥ + Erel⊥

= E⊥(particle 1) + E⊥(particle 2) ,

will thus change only by an exponentially small amount
in a binary collision.
Note that E⊥(particle 1) and E⊥(particle 2) each

will undergo substantial change in the course of a col-
lision, since each individual particle moves in a rapidly
fluctuating electric field from the other particle. But

their sum will only change by a small amount, if the
magnetic field is strong. As in the diatomic molecules,
the near constancy of the sum is not the result of a near
constancy of each of its parts.

3.1 Many Particles
For N >> 1 particles there is little to be gained in

separating out the center-of-mass motion, since this
will rid the problem of only 3 degrees of freedom.
Nevertheless the key result from the 2-particle problem
is still valid, as the following argument demonstrates.
The Hamiltonian, can, in the polar guiding center coor-
dinates be written as

H =
N∑
j=1

Ωcpψj
+
p2
zj

2
+
∑
i>j

1
| r1 − r2 |


where ri−rj are assumed to be expressed as a function
of Θi,Θj , pΘi , pΘj , ψi, ψj , etc. To uncover the many-
particle invariant we introduce a new set of angle vari-
ables, {ϕj}, given by

ϕ1 = ψ1 ,

ϕj = ψj − ψ1 , j = 2, · · · , N .

The corresponding momentae are:

pϕ1 =
N∑
j=1

pψj
,

pϕj
= pψj

, j = 2, · · · , N .

so that, in terms of the (ϕ, pϕ,Θ, pΘ, z, pz) variables,
the Hamilton function takes the form

H = Ωcpϕ1 +
N∑
j=1

p2
zj

2
+
∑
i>j

1
| r1 − r2 |

 .

Under the condition of strong magnetization, the vari-
able ϕ1 is the only fast angle in the problem. Conse-
quently, pϕ1 is an adiabatic invariant. For Ωc constant,
Ωcpϕ =

∑
Ej⊥ is therefore nearly conserved. Thus,

generalizing the 2-particle result, the sum of all the in-
dividual particle perpendicular actions, for a homoge-
neous, strong magnetic field, is an adiabatic invariant
of the full N -particle dynamics.

4 How good is the conspiracy?
Since Landau and Teller’s pioneering work in the

1930’s, the ‘breaking’ or shift in an adiabatically invari-
ant quantity when subjected to a given perturbation has
been to calculate along unperturbed orbits, i.e., evalu-
ate the oscillatory integral of the time derivative of the
action.



For the case of binary collision of two charged par-
ticles in a a strong magnetic field (equivalent to the
collision of one charged particle with a charge fixed
at the origin), one can explicitly compute the exponen-
tially small change in Erel⊥ = Ωcpψ through a collision
where initially and finally the moving particle is at in-
finity.
The change in perpendicular kinetic energy is calcu-

lated as

∆Erel⊥ =
∫ +∞

−∞

cos(Ωct)
[ρ2 + z(t)2]3/2

dt

where ρ is the perpendicular distance from the guiding
centre to the origin, and z(t) is a solution to the differ-
ential equation

ż2(t) +
1

[ρ2 + z(t)2]
= ż2(−∞)

corresponding to the ’infinite field’ motion of a particle
sliding on the field line.
By extending the integral to complex values of the

time parameter and deforming the contour away from
the real line as far as permitted by the branch cuts of the
function in the denominator, one finds that the contour
integral has the form

∆Erel⊥ = h(ρ) exp (−g(ρ)Ωc) cos δ ,

where δ is (a random) initial phase, the function h is
neither exponentially small or large, and the function
g(ρ) is given by

g(ρ) =
∫ ρ

1

x3/2√
(x− 1)(ρ2 − x2)

dx

g(   )ρ

ρ

Figure 3. The function g(ρ) which determines the exponential
smallness of the change of the adiabatic invariant in a single colli-
sion.

The function g(ρ) is monotone with g(0) = π/2. De-
tails can be found in [5].

To estimate the evolution of the many-particle invari-
ant, one can assume that the evolution proceeds as a
sequence of binary collisions, and then use statistical
mechanics to find evolution of the average perpendic-
ular kinetic energy of an ensemble of particles. This
process is discussed in [3].

5 Conclusion
The deep mechanical phenomenon of adiabatic invari-

ance manifests itself not only as a single-particle phe-
nomenon, but may also take the form of a non-trivial
collective behavior, a conspiracy of high-frequency os-
cillators. The result also generalizes to the case where
there are a number of well-separated time scales; the
oscillators associated with each time scale will ex-
change energy among themselves and tend to decouple
from oscillators associated with other time scales.
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