
ENOC-2008, Saint Petersburg, Russia, June, 30–July, 4 2008

OPTIMAL SYNTHESIS OF GYROMOMENT GUIDANCE AND
CONTROL FOR SPACECRAFT AND FREE-FLYING ROBOTS

Yevgeny Somov
Department ” Dynamics and Motion Control ”

Samara Scientific Center, Russian Academy of Sciences (RAS)
Russia

e somov@mail.ru

Abstract
Problems by an optimal synthesis of the spacecraft at-

titude motion at its a spatial rotation maneuver are most
actual for the spacecraft opto- or radio-electronic ob-
serving the Earth and for space free-flying robots. New
statement of the optimization problem by the spacecraft
rotation maneuver with the general kinematic bound-
ary conditions is considered. Methods for exact nu-
meric and approximate analytic solution of the stated
problem, and also some results on synthesis of the
spacecraft guidance and control laws of the gyromo-
ment control cluster by multiply scheme on the base
of six gyrodines, are presented. Methods for synthe-
sis of the digital robust gyromoment spacecraft attitude
control systems with obtaining the guaranteed quality’s
indexes, are also represented.
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1 Introduction
Some author’s results were before presented (Somov,

2006; Somovet al., 2007) on analytic synthesis of the
spacecraft (SC) and the free-flying space robotic mod-
ule (SRM) gyromoment guidance laws at given time
interval. Obtained moreover guidance laws are not
unique, therefore there are appeared problems for syn-
thesis both a strict optimal and approximate optimal the
gyromoment guidance laws which are calculated by ex-
plicit analytic relations. In the paper new statement of
the optimization problem is presented on the SC ro-
tation maneuver with the general kinematic boundary
conditions. Applied quality’s index is most pactice im-
portant functional which have a clear physical sense.
There are presented methods for exact numeric and ap-
proximate analytic solution of the stated problem, and
also some results on synthesis of the SC guidance and
robust digital control laws of the gyromoment cluster
by multiply scheme on the base of six gyrodines.

2 Problem of a rotation maneuver optimization
The SC rotation maneuver in inertial reference frame

(IRF) I⊕ described by kinematic relations for its body
reference frame (BRF)

Λ̇(t) = 1
2Λ ◦ ω(t); ω̇(t) = ε(t);

ε̇ = v ≡ ε∗(t) + ω(t)× ε(t)
(1)

during given time intervalTp ≡ [tp0, t
p
f ] wheretpf ≡

tp0 + Tp. The optimization problem consists in de-
termination of time functions — quaternionΛ(t) =
(λo(t),λ(t)),λ ≡ {λi, i = 1÷ 3} and vectorsω(t) ≡
{ωi(t)}, ε(t) ≡ {εi(t)} for the boundary conditions
on left (t = tp0) and right (t = tpf ) trajectory ends

Λ(tp0) = Λ0; ω(tp0) = ω0; ε(tp0)=ε0; (2)

Λ(tpf ) = Λf ; ω(tpf ) = ωf ; ε(tpf ) = εf (3)

with optimization of the integral quadratic index

Io =
1
2

∫ tp
f

tp
0

〈v(τ),v(τ)〉 dτ ⇒ min . (4)

Optimizing this functional is topologically equivalently
to optimizing the most practice important functional

I1 = v̄ ≡ 1
Tp

∫ tp
f

tp
0

|v(τ)| dτ ⇒ min, (5)

which have the clear physical sense — the mean value
v̄ of the ”control” module|v(t)| — a module by deriv-
ative of the BRF acceleration vector during process of
the SC (or the SRM) rotation maneuver with respect to
inertial reference frameI⊕.



3 Optimal one-axis motion
Of course this problem is elementary and have ana-

lytic solution by Pontryagin’s maximum principle. In
result, the SC optimal on index (4) motion with respect
to anyk axis is presented by the analytic functionϕk(t)
in a class of the five degree polynomials (splines) by
normed timeτ = (t − tp0)/Tp ⊂ [0, 1] with analytic
relations

ϕ̈k(τ) = εk(τ) = ε0
k

+τ(6a3 + 12a4τ + 20a5τ
2)/T 2

p ;

ϕ̇k(τ) = ωk(τ) = ω0
k + ε0

k Tpτ

+τ2(3a3 + 4a4τ + 5a5τ
2)/Tp;

ϕk(τ) = ϕ0
k + τ(ω0

kTp + ε0
kT 2

p τ/2
+τ2(a3 + a4τ + a5τ

2)),

(6)

where constant coefficientsas, s = 3 ÷ 5 are defined
by the vector-matrix relation

a3

a4

a5

=A

ϕf
k − ϕ0

k − ω0
kTp − ε0

kT 2
p /2

Tp(ω
f
k − ω0

k − ε0
kTp)

T 2
p (εf

k − ε0
k)

 (7)

with matrixA =

 10 −4 0.5
−15 7 −1

6 −3 0.5

 and boundary con-

ditions ϕs
k, ωs

k, εs
k, s = 0, f on angels, angular rates

and accelerations for that elementary rotation.

4 Approximate optimal spatial motion
Developed analytical approach to the problem is based

on necessary and sufficient condition for solvability of
Darboux problem. At general case the solution is pre-
sented as result of composition by three (k = 1÷ 3)
simultaneously derived elementary rotations of embed-
ded basesEk about unitsek of Euler axes, which posi-
tions are defined from the boundary conditions (2) and
(3) for initial spatial problem. For all 3 elementary ro-
tations with respect to unitsek the boundary conditions
are analytically assigned.
Into the IRFI⊕ the quaternionΛ(t) is defined by the

production

Λ(t) = Λ0 ◦ Λ1(t) ◦ Λ2(t) ◦ Λ3(t), (8)

whereΛk(t)= (C(ϕk(t)/2), S(ϕk(t)/2)ek), C(α) =
cos α, S(α) = sinα, and functionsϕk(t) present the
elementary rotation angles in analytical form (6),(7).
Let the quaternionΛ∗ ≡ (λ∗0,λ

∗) = Λ̃0 ◦ Λf 6= 1
have the Euler axis unite3 = λ∗/S(ϕ∗/2) by 3-rd
elementary rotation where angleϕ∗ = 2arccos(λ∗0).
For elementary rotations there are applied next the
boundary quaternion values:

Λ1(t
p
0) = Λ1(t

p
f ) = Λ2(t

p
0) = Λ2(t

p
f ) = 1;

Λ3(t
p
0) = 1;Λ3(t

p
f ) = (C(ϕf

3/2), e3S(ϕf
3/2)),

(9)

whereϕf
3 = ϕ∗ and1 is a single quaternion. For

eω
0 ≡ ω0

ω0
; eω

f ≡
ωf

ωf
; eε

0 ≡ ε0
ε0

; eε
f ≡

ε0
ε0

; a ≡ |a|

unit e1 of 1-st elementary rotation’s on Euler’s axis is
selected by next simple algorithm:

a =: eω
0 − 〈eω

0 , e3〉e3, if a > 0, then e1 = a/a,

else

a =: eω
f − 〈eω

f , e3〉e3, if a > 0, then e1 = a/a,

else

a =: eε
0 − 〈eε

0, e3〉e3, if a > 0, then e1 = a/a,

else

a =: eε
f − 〈eε

f , e3〉e3, if a > 0, then e1 = a/a,

else 3-rd rotation is only, e.g.Λ1(t) = Λ2(t) ≡ 1.

Unit e2 is defined ase2 = e3×e1. All vectorsωk(t) =
ϕ̇k(t)ek, εk(t) = ϕ̈k(t)ek andε̇k(t) =

...
ϕk(t)ek have

analytic form owing to functionϕk(t) (6), (7) which is
optimal on index (4) for each elementary rotation.
At initial notationsω(1)(t) = ω1(t), ε(1)(t) = ε1(t)

andε̇(1)(t) = ε̇1(t) vectorsω(t), ε(t) andε̇(t) ≡ v(t)
are analytically defined by next recurrent algorithm: for
upper indexesk = 2, 3 there are consistently computed

ωk
q (t) =: Λ̃k(t) ◦ ω(k−1)(t) ◦Λk(t);

ω(k)(t) = ωk(t) + ωk
q (t);

εk
q (t) =: Λ̃k(t) ◦ ε(k−1)(t) ◦Λk(t)

ε(k)(t) = εk(t) + εk
q (t) + ωk

q (t)× ωk(t);

ε̇k
q (t) =: Λ̃k(t) ◦ ε̇(k−1)(t) ◦Λk(t);

ε̇(k)(t) = ε̇k(t) + ε̇k
q (t) + (2εk

q (t)
+ωk

q (t)× ωk(t))× ωk(t) + ωk
q (t)× εk(t),

(10)

in result one can obtainω(t)=ω(3)(t), ε(t)=ε(3)(t),
ε∗(t) = ε̇(3)(t) andε̇(t) = ε∗(t) + ω(t)× ε(t). Func-
tionsϕk(t), k = 1÷ 3 must have boundary conditions

ϕ̇0
k = 〈ω0, ek〉, k = 1, 2, 3; ϕ̇f

3 = 〈ωf , e3〉;

ϕ̇f
k = 〈Λ∗ ◦ (ωf − e3ϕ̇

f
3 ) ◦ Λ̃

∗
, ek〉, k = 1, 2;

ϕ̈0
1 = 〈ε0, e1〉 − ϕ̇0

2ϕ̇
0
3; ϕ̈0

2 = 〈ε0, e2〉+ ϕ̇0
1ϕ̇

0
3;

ϕ̈0
3 = 〈ε0, e3〉 − ϕ̇0

1ϕ̇
0
2; ε̃f

k ≡ 〈Λ∗ ◦ εf ◦ Λ̃
∗
, ek〉;

ϕ̈f
1 = ε̃f

1 − ϕ̇f
2 ϕ̇f

3 ; ϕ̈f
2 = ε̃f

2 + ϕ̇f
1 ϕ̇f

3 ; ϕ̈f
3 = ε̃f

3 − ϕ̇f
1 ϕ̇f

2 ,

which are carried out by (9) and the algorithm (10).
Suggested approach have large advantages with re-

spect to optimal rotations by standard Euler-Krylov an-
gels, see numerical results in (Somov, 2007).

5 Optimal spatial motion
For nonlinear problem (1) – (4) Hamilton function is

H = − 1
2 〈v,v〉+ 1

2 〈Ψ,Λ ◦ ω〉+ 〈µ, ε〉+ 〈ν,v〉

= − 1
2 〈v,v〉+ 1

2 〈vect(Λ̃ ◦Ψ,ω〉+ 〈µ, ε〉+ 〈ν,v〉



with associated quaternionΨ(t) = Cϕ ◦ Λ(t), where
Cϕ = (cϕ0, cϕ) is the normed quaternion (Branetz and
Shmyglevsky, 1973) with a vector partcϕ = {cϕk}.
The associated differential system have the form

Ψ̇= 1
2Ψ ◦ ω; µ̇=− 1

2Λ̃ ◦ cϕ ◦Λ; ν̇ =−µ. (11)

The optimality condition∂H/∂v = −v + ν = 0 give
the optimal ” control ”

v(t)=cε−cω(t−tp0)+
1
2

∫ t

tp
0

(
∫ τ

tp
0

Λ̃(s)◦cϕ◦Λ(s)ds) dτ,

where vectorscϕ, cω = {cωk} andcε = {cεk}must be
numerically defined using known analytical structure
of solution for direct system (1) and taking into account
the boundary conditions (2) and (3).
Standard Newton iteration method was applied for nu-

merical obtaining the ”control”v(t) which is a strict
optimal on index (4) for the nonlinear optimization
problem (1) – (4). Moreover analytical solution of the
”start” problem (initial point) was applied in the form
of approximate optimal motion (8) and (6), (7) with the
constant vectorscϕ, cω andcε. Values of these con-
stant vectors are numerically corrected by an iteration
procedure using a combine numerical integration of di-
rect (1) and associated (11) differential systems which
are linearizated at neighbourhood of numerical solution
on previous iteration. At such initial point the New-
ton’s iteration process have a rapid convergence: usu-
ally there is needed only 2 – 3 iterations for obtain-
ing a numerical solution with fine accuracy. Difference
between approximate optimal spatial motion (analytic
solution of ”start” problem) and strict optimal spatial
motion is very light — up to 5 % by functionalI1 (5)
for the SC (or the SRM) practical rotational maneuvers.

6 Gyro Moment Cluster
At precession theory of control moment gyros a sim-

plest modeling the gyro moment cluster (GMC), based
on several gyrodines (GDs), is carried out as follows.
Let each GD have angular momentum (AM) vector
Hp ≡ hg hp, p = 1 ÷ m with the same module
hg. Each GD is connected the right trihedron of its
axes: unithp(βp) of the AM vector which position
is determined by angleβp in own device basis, the
unit gp of the GD suspension axis fixed in the BRF
Oxyz and unitpp(βp) = hp(βp) × gp. Normed tohg

vector of the GMC summary AM ish(β) ≡
∑

hp,
where vector-columnβ = {βp}. The unitmg

p(βp) =
∂hp(βp)/∂βp =gp×hp(βp) of the GD#p gyroscopic
torque is always contrary with respect to unitpp(βp).
Collinear pair of the stop-less GDs was namedScis-

sored Pair Ensemble(SPE ) in known original work
J.W. Crenshaw(1973), and redundant multiply scheme
based on three collinear GD pairs (m = 6) was named
as3-SPE, see (Somovet al., 2003) and fig. 1. At the

Figure 1. The3-SPEscheme of the GMC

park state of the GMC a vector of its normed summary
AM h(β) = 0. Into orthogonal canonical basisOxyz,
see fig. 1, the GD’s AM units have next projections:

x1 = C1; x2 = C2; y1 = S1; y2 = S2;

x3 = S3; x4 = S4; z3 = C3; z4 = C4;
y5 = C5; y6 = C6; z5 = S5; z6 = S6,

whereSp ≡ sinβp and Cp ≡ cos βp. Then vector-
columnh(β) = {x, y, z} of normed GMC’s summary
AM vector and matrixAh(β) = ∂h/∂β have the form

h(β) = {
∑

xp,
∑

yp,
∑

zp};

Ah(β)=

−y1 −y2 z3 z4 0 0
x1 x2 0 0 −z5 −z6

0 0 −x3 −x4 y5 y6

 .

For 3-SPEscheme a singular state is appeared when
the matrix GrammeG(β) = Ah(β)At

h(β) loses its
full rang, e.g. whenG ≡ detG(β) = 0.

7 Synthesis of the gyromoment guidance laws
The problem consists in elaboration of algorithms for

angular removing each gyrodine into the GMC for ex-
act angular guidance of the SC (or SRM) body, for ex-
ample at optimal spatial rotational maneuver.
For the GMC control torque vector

Mg(β,ug) = −Ḣ = −hgAh(β)ug; β̇=ug (12)

and the SC model as a free rigid body the simplified
controlled object is considered:

Λ̇ = Λ ◦ω/2; Jω̇+[ω×]Go = Mg; β̇ = ug. (13)

Here all vectors and tensorJ of the SC body inertia are
presented in the BRF, andGo = Jω + H(β) with the
GMC summary AM’s vectorH(β) = hgh(β).
At given the SC body angular programmed motion

Λp(t), ωp(t), εp(t)= ω̇p(t) with respect to the IRFI⊕
during time intervalt ∈ Tp and for forming the vector
of corresponding continuous control torqueMg(β,ug)



Figure 2. Gramme determinantG for the GMC canonical scheme

3-SPEat the vector explicit tuning law (16) withρ = 0.65.

(12), the vector-columnṡβ andβ̈ must be component-
wise module restricted:

|β̇p(t)| ≤ ūg < ūm
g , |β̈p(t)| ≤ v̄g, ∀t ∈ Tp, (14)

where values̄ug, ūm
g and v̄g are constant, andp =

1÷6. Onboard algorithms have been developed for gy-
romoment SC guidance by its SRM on the explicit time
functionsΛp(t), ωp(t), εp(t) for the boundary condi-
tions (2), (3) and also for given condition

ε̇(tpf ) = ε̇f ≡ ε∗f + ωf × εf , (15)

which presents requirements to asmooth conjugation
of guidance by a SRM with guidance at next the SC’s
spatial course motion (SCM), taking into account the
restrictions (14) to vectorṡβ(t) and β̈(t) Developed
approach to the problem is based on the SC approxi-
mate optimal motion with given boundary conditions
(2), (3) and (15). Here functionsϕk(t) are selected in a
class of splines by five and six degree, moreover a mod-
ule of a angular ratėϕ3(t) in a position transfer (k=3)
may be limited when functionṡϕ1(t) = ϕ̇2(t)≡ 0 and
ϕ̇3(t)=ω∗=const. The technique is based on the gen-
eralized integral’s properties for the AMGo(t) of the
mechanical system ”SC+GMC” and allows to evaluate
vectorsβ(t), β̇(t), β̈(t) in analytical form for a preas-
signed SC motionΛ(t), ω(t), ε(t), ε̇(t)∀t ∈ Tp.

At introducing the denotations

x12 = x1 + x2; x34 = x3 + x4; y12 = y1 + y2;
y56 = y5 + y6; z34 = z3 + z4; z56 = z5 + z6;
x̃12 = x12/

√
4− y2

12 ; x̃34 = x34/
√

4− z2
34;

ỹ12 = y12/
√

4− x2
12 ; ỹ56 = y56/

√
4− z2

56;

z̃34 = z34/
√

4− x2
34 ; z̃56 = z56/

√
4− y2

56

components of the GMC explicit vector tuning law

fρ(β) ≡ {fρ1(β), fρ2(β), fρ3(β)} = 0 (16)

are applied in the form

fρ1(β) ≡ x̃12 − x̃34 + ρ (x̃12 x̃34 − 1);
fρ2(β) ≡ ỹ56 − ỹ12 + ρ (ỹ56 ỹ12 − 1);
fρ3(β) ≡ z̃34 − z̃56 + ρ (z̃34 z̃56 − 1).

The analytical proof have been elaborated that vector
tuning law (16) ensures absent of singular states by this
GMC scheme for all values of the GMC AM vector
h(t) inside all its variation domain, see fig. 2.
For the representation

x12 = (x + ∆x)/2; x34 = (x−∆x)/2;
y56 = (y + ∆y)/2; y12 = (y −∆y)/2;
z34 = (z + ∆z)/2; z56 = (z−∆z)/2

and denotation∆ = {∆x,∆y,∆z} one can obtain the
nonlinear vector equation∆(t) = Φ(h(t),∆(t)). At
a known vectorh(t) this equation have single solution
∆(t), which is readily computed by method of a sim-
ple iteration. Further the unitshp(βp(t)) and vector-
columnsβ(t), β̇(t), β̈(t) are calculated by the explicit
analytical relations∀t ∈ Tp. Fig. 3 and fig. 4 present
dynamic characteristics of the SC’s SRM and the GMC
by 3-SPEscheme during timet ∈ Tp = [0, Tp] with
Tp = 45 sec, for a possible limitation|ω(t)| ≤ ω∗ =
2◦/s and next boundary conditions:

Λ0 = (0.06255029449,−0.35479160599,
−0.67663869314,−0.64216077108);

Λf = (0.04168181290,−0.35479620846,
−0.89901121936,−0.25330042320);

ω0 = {0.060345, 0.355995, 0.071572}◦/s;
ωf = {−0.084455,−0.333483, 0.060107}◦/s;
ε0 = 10−2 · {0.2960,−0.0643, 0.0303}◦/s2;
εf = 10−2 · {−0.2784; 0.1417;−0.0074}◦/s2;
ε̇f = 10−5 · {0.05, 0.38, 0.01}◦/s3.

8 Synthesis of the gyromoment control law
For a fixed position of the SC flexible structures with

some simplifying assumptions andt ∈ Tt0 =[t0,+∞)
a SC angular motion model is as follows:

Λ̇ = Λ ◦ ω/2; Ao {ω̇, q̈} = {Fω,Fq}, (17)

Fω =Mg(β,ug)− ω×G+Mo
d+Qo; β̇=ug;

Fq ={−((δ/π)Ωq
j q̇j + (Ωq

j)
2qj) + Qq

j(ω, q̇j , qj)}.

Here vectorMo
d presents the external disturbance



Figure 3. The SC’s SRM:a — without a limit on module of the SC angular rate vector;b — with such limit.

Figure 4. The GMC3-SPEscheme coordinates at the same SC’s SRM:a — without a limit;b — with such limit.



torques,Qo andQq
j(ω, q̇j , qj) are nonlinear functions,

and

Ao=
[

J Dq

Dt
q I

]
;

G = Go + Dq q;
q = {qj , j = 1÷ nq}.

Applied onboard measuring subsystem is based on in-
ertial gyro unit corrected by the fine fixed-head star
trackers. Applied contemporary filtering& alignment
calibration algorithms and a discrete astatic observer
give finally a fine discrete estimating the SC angular
motion by the quaternion and angular rate vector, when
a measurement periodTq = ts+1 − ts ≤ Tu is mul-
tiply with respect to a control periodTu. The GMC
torque vectorMg is presented in the form (12), where
ug

p(t) = ag Zh[Sat(Qntr(ug
pk, bu), ūm

g ), Tu] with a
constantag and a control periodTu = tk+1 − tk,
k ∈ N0 ≡ [0, 1, 2, ...); discrete functionsug

pk are out-
puts of nonlinear control law, and functionsSat(x, a),
Qntr(x, a) andZh[x, T ] are general-usage ones.

Applied approach to synthesis of nonlinear control
system with a partial measurement of its state is based
on method of vector Lyapunov functions (VLF) in co-
operation with the exact feedback linearization (EFL)
technique.

In stage 1, the GMC control torque vectorMg ( 12)
and the SC simplest model ( 13) are considered. The
error quaternion isE = (e0, e) = Λ̃p(t)◦Λ, Euler
parameters’ vector isE = {e0, e}, and the atti-
tude error’s matrix isCe ≡ C(E) = I3 − 2[e×]Qe,
whereQe ≡ Q(E) = I3e0 + [e×] with det(Qe)=e0.
If error δω ≡ ω̃ in the rate vectorω is defined as
ω̃ = ω−Ceω

p(t), and the GMC’s required control
torque vectorMg is formed as

Mg = ω×Go + J(Ceω̇
p(t)− [ω×]Ceω

p(t) + m̃),

then the simplest nonlinear model for the SC’s attitude
error is as follows:

ė0 = −〈e, ω̃〉/2; ė = Qeω̃/2; ˙̃ω = m̃.

By the relationsQ−1
e Qt

e = Ce; Q−1
e =Qt

e+e et/e0;
Q−1

e e = e/e0; I3−e0Q−1
e = Qt

e[e×], which are used
for e0 6= 0, a non-local nonlinear coordinate transfor-
mation is applied at analytical synthesis by the EFL.
That results to the nonlinear control law

m̃(E, ω̃) = −A0 e Sgn(e0)−A1 ω̃,

whereA0 =((2a∗0 − ω̃2/2)/e0)I3; A1 =a∗1I3 −Reω,
Sgn(e0) = (1, if e0 ≥ 0)∨ (−1, if e0 < 0), matrix
Reω = 〈e, ω̃〉Qt

e[e×]/(2e0), and constantsa∗0,a
∗
1 are

calculated on spectrumS∗ci = −αc ± jωc. Simultane-
ously the VFLυ(E, ω̃) is analytically constructed.

In stage 2, the problems of synthesising nonlinear
control law are solved for model (17) of flexible space-
craft. Furthermore, the selection of parameters in the
structure of the GMC nonlinear robust control law is
fulfilled by a multistage numerical analysis and para-
metric optimization of the comparison system for the
VLF. Thereto, the VLF have the structure derived
above for the error coordinatesE, ω̃ and the structure of
other VLF components in the form of sublinear norms
for vector variablesq(t), q̇(t)) using the vectorβ(t).

Figure 5. The rate errors for consequence of the SC rotational ma-

neuver and a course motion

9 Computer Simulation
Fig. 5 presents some results on computer simulation of

digital gyromomemt control system for Russian remote
sensing SC by theResource-DKtype. Here the rate
errors are represented at consequence of the SC spatial
rotational maneuver for timet ∈ [0, 45) sec and the SC
course motion for timet ∈ [45, 90] sec.

10 Conclusion
Contemporary approaches and some new results were

presented on optimization of attitude guidance and
nonlinear robust gyromoment control applied for the
agile remote sensing spacecraft. These results were
also successfully applied for a SRM at transportation
of a flexible mechanical payload (Somov, 2006)
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