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Abstract 2 Problem of a rotation maneuver optimization
Problems by an optimal synthesis of the spacecraft at- The SC rotation maneuver in inertial reference frame

titude motion at its a spatial rotation maneuver are most (IRF) I4 described by kinematic relations for its body

actual for the spacecraft opto- or radio-electronic ob- reference frame (BRF)

serving the Earth and for space free-flying robots. New

statement of the optimization problem by the spacecraft

rotation maneuver with the general kinematic bound-

ary conditions is considered. Methods for exact nu- E=v=e*(t)+w(t) xe(t)

meric and approximate analytic solution of the stated

problem, and also some results on synthesis of the ) ) ]

spacecraft guidance and control laws of the gyromo- during given time intervall, = [tg, 7] wheret; =

ment control cluster by multiply scheme on the base to + Tp- The optimization problem consists in de-

of six gyrodines, are presented. Methods for synthe- termination of time functions — quaterniof(t)

sis of the digital robust gyromoment spacecraft attitude (Ao(t), A(t)), A = {A;,7 =1+ 3} and vectorso(t)

control systems with obtaining the guaranteed quality’s {wi(t)}, &(t) = {&:(¢)} for the boundary conditions

indexes, are also represented. on left (¢ = t5) and right ¢ = t’;) trajectory ends

A(th) = Ag; w(th) = wo; e(th) =eo; 2

Key words
Motion control, nonlinear tems, application ) ) )

! inear systems, applications A(#) = Api w(th) =wpi () =5 (3)
1 Introduction with optimization of the integral quadratic index

Some author’s results were before presented (Somov,

2006; Somowet al,, 2007) on analytic synthesis of the »
spacecraft (SC) and the free-flying space robotic mod- I = 1 / f (v (), v(r)) dr = min. @
ule (SRM) gyromoment guidance laws at given time 2 /i ’
interval. Obtained moreover guidance laws are not
unique, therefor'e ther'e are appeared'problems., for Syn_Optimizing this functional is topologically equivalently
thesis both a strict optimal and approximate optimal the L e .

. . to optimizing the most practice important functional
gyromoment guidance laws which are calculated by ex-
plicit analytic relations. In the paper new statement of
the optimization problem is presented on the SC ro- 1 [t
tation maneuver with the general kinematic boundary L=v=— /p |v(7)| dr = min, ()
conditions. Applied quality’s index is most pactice im- P It
portant functional which have a clear physical sense.
There are presented methods for exact numeric and apwhich have the clear physical sense — the mean value
proximate analytic solution of the stated problem, and v of the "control” modulelv(¢)| — a module by deriv-
also some results on synthesis of the SC guidance andative of the BRF acceleration vector during process of
robust digital control laws of the gyromoment cluster the SC (or the SRM) rotation maneuver with respect to
by multiply scheme on the base of six gyrodines. inertial reference framg,,.
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3 Optimal one-axis motion Wheregaf = p* and1 is a single quaternion. For
Of course this problem is elementary and have ana- . _ _
. . .y . . . €q = ; €0 = ; f_—,a:|a‘
lytic solution by Pontryagin’s maximum principle. In wy €0 €0
result, the SC optimal on index](4) motion with respect unit e; of 1-st elementary rotation’s on Euler’s axis is

Wo. w — Yr.

Eo. 8—50

to anyk axis is presented by the analytic functipg(t) selected by next simple algorithm:

in a class of the five degree polynomials (splines) by

normed timer = (¢ — t7)/7, C [0,1] with analytic a=:ef — (ef,ez)es,if a > 0,then e; = a/a,
relations else

a=:ef — (e“j,e3>e3,if a > 0,then e; = a/a,

Pr(1) = ex(1) = €} e
+7(6a3 + 12a47 + 20a572) /TZ;
(6as * ST a=:ej— (ef,es)es,if a > 0,then e; = a/a,

gbk(T):wk( )—wk +5kT7‘

lse
oyp . 6 ¢

. (3? + 4a‘(1)T ;— bas ") /Tp; a=:e} — (e}, e3)es,if a >0,then e =a/a,
or(T) = o) + T(wiTp + e, Ty 7/2 else 3-rd rotation is only, e.g\1 () = A2(t) =1

+72(az + as7 + as7?)),

o . Unit e, is defined ags = e3 x e1. All vectorswy(t) =
where constant coefficients, s = 3 5 are defined ., (1)e, e,(t) = @i (t)ey, andey(t) = Py (t)e, have

by the vector-matrix relation analytic form owing to functiorpy(¢) (6), (7) which is
optimal on index[(#) for each elementary rotation.
as ol — ) — WIT, — 3T2/2 At initial notationsw ™) (t) = w (t), eM(t) = €, ()
as| =A Tp(wl — Wl — &97T3) (7)  andeW(t) = &, (t) vectorsw(t), e(t) andé(t) = v(t)
as T,f (5£ —€9) are analytically defined by next recurrent algorithm: for
upper indexe& = 2, 3 there are consistently computed
10 —4 0.5 N . 1
withmatrixA = | —15 7 —1 | andboundarycon-  wh(t) =: Ax(t) o w* V(1) 0 Ay(t);
6 —3 0.5 w (1) = wp(t) + wk(t);
ditions ProwWiers s = 0,f on angels, angular rates ek(t) = As(t) 0 e® D (t) 0 Ay(t)
and accelerations for that elementary rotation. A
el )(t):ek(t)+€q( )—|—wq( ) X wi(t); (10)
ki . & - (k—1) )
t) =: Ap(t t) o Ai(t);
4  Approximate optimal spatial motion ??k()) k() E.k (B e kk( )
Developed analytical approach to the problem is based € (1) = éx(t) +&4(t) + (2e4(2)
on necessary and sufficient condition for solvability of ~ +w? (t) x wi(t)) X wi(t) +wk(t) x ex(t),

Darboux problem. At general case the solution is pre-
sented as result of composition by thrée=t 1+ 3) in result one can obtai@(t) —w® (1), et) :5(3)(15),
simultaneously derived elementary rotations of embed- e*(t) = ¢® () ande(t) = e*(t) + w(t) x (). Func-
ded base&;, about unitse; of Euler axes, which posi-
tions are defined from the boundary conditidnis (2) and
(3) for initial spatial problem. For all 3 elementary ro-

tionsyy(t), k = 1 + 3 must have boundary conditions

. . . - _ NP .
tations with respect to units, the boundary conditions P = (woex), k=123 ¢3=(wy,es);
are analytically assigned. _ _ _ ]J: (A" o (wy — e3¢§) o A*, er), k=12
Into the IRFIg the quaterniom\(t) is defined by the 50 = 0.0, -0 .0.-0
production ¢1 = (0. e1) — 295 ¢3 = (€0, €2) + P1%;
39 = (e0,e3) — (N8 &l = (A" oepo A ep);
A(t) = Ag o A1 (t) o As(t) o As(t), 8
(*) 00 Ax(t) o As(t) o As(t) ®) 90{ { 902%0374102_52 +S01<P37993_53 <P1<P2v
whereA (t) = (Q(‘pk(t)/Q)’ S(%(t)/z)e’“)’ Cla) = which are carried out by 9) and the algoritim](10).

cos, S(a) = sinq, and functionspy(t) present the
elementary rotation angles in analytical fofm (§),(7).
Let the quaterniomM* = (\j,A*) = Ago A; # 1
have the Euler axis unigs = A\*/S(¢*/2) by 3-rd
elementary rotation where angle’ = 2arccos(\).
For elementary rotations there are applied next the5 Optimal spatial motion

boundary quaternion values: For nonlinear problenj {1) +}4) Hamilton function is

Suggested approach have large advantages with re-
spect to optimal rotations by standard Euler-Krylov an-
gels, see numerical results in (Somov, 2007).

A(tg) = Al(t?) = A (tg) = Az(tz}) =1 © H=-3(v,v)+ ¥ Aow)+ (u,e)+ (v,v)

As(th) = 1; As(th) = (Clp}/2),e35(%/2)), = —5(v,v) + 3{vect(A o ¥, w) + (p, ) + (v, )



with associated quaterniolt(t) = C,, o A(t), where
C, = (cp0, €y) is the normed quaternion (Branetz and
Shmyglevsky, 1973) with a vector patt, = {c,x}.
The associated differential system have the form

%[X oc,oA; v=—p. (11)
The optimality conditiordH/dv = —v + v = 0 give
the optimal " control ”

v(t):cs—cw(t—tg)—i—% /tp( /t :A(s)ocg,oA(s)ds) dr,

where vectors,,, c,, = {c.i} andc. = {c.} mustbe
numerically defined using known analytical structure
of solution for direct systenfi[1) and taking into account
the boundary condition§](2) ar{d (3).

Standard Newton iteration method was applied for nu-

merical obtaining the "control% (¢) which is a strict
optimal on index [(#) for the nonlinear optimization
problem 1) —[(#). Moreover analytical solution of the
"start” problem (initial point) was applied in the form
of approximate optimal motiof {8) ar{d ()] (7) with the
constant vectors,,, c,, andc.. Values of these con-

Figure 1. The3-SPEscheme of the GMC

park state of the GMC a vector of its normed summary
AM h(3) = 0. Into orthogonal canonical basidxyz,
see fig[ 1, the GD’s AM units have next projections:

z1 = Ch; 29 = Co; y1 = S1; Y2 = So;
x3 = S3; x4 = Sa; 23 = C3; 24 = Cy;
ys = Cs; ys = Cg; 25 = S5; 26 = S,

where S, = sin3, andC, = cos3,. Then vector-
columnh(B) = {x,y,z} of normed GMC’s summary

stant vectors are numerically corrected by an iteration AM vector and matrixA,,(3) = 0h/93 have the form

procedure using a combine numerical integration of di-
rect (1) and associated (11) differential systems which
are linearizated at neighbourhood of numerical solution

on previous iteration. At such initial point the New-

ton’s iteration process have a rapid convergence: usu-

ally there is needed only 2 — 3 iterations for obtain-
ing a numerical solution with fine accuracy. Difference
between approximate optimal spatial motion (analytic
solution of "start” problem) and strict optimal spatial
motion is very light — up to 5 % by functiond} (5)

for the SC (or the SRM) practical rotational maneuvers.

6 Gyro Moment Cluster
At precession theory of control moment gyros a sim-

h(B) = {3 2p, 2 Up: > 2p}s

—y1—Y2 23 22 0 0
Ah(ﬁ): r1 X2 0 0 —Z5 —Zg
0 0 —x3-—24 Y5 ¥s

For 3-SPEscheme a singular state is appeared when
the matrix Grammez(3) = An(B)A}(3) loses its
full rang, e.g. wherG = det G(3) = 0.

7 Synthesis of the gyromoment guidance laws

The problem consists in elaboration of algorithms for
angular removing each gyrodine into the GMC for ex-
act angular guidance of the SC (or SRM) body, for ex-
ample at optimal spatial rotational maneuver.

plest modeling the gyro moment cluster (GMC), based Fqr the GMC control torque vector

on several gyrodines (GDs), is carried out as follows.
Let each GD have angular momentum (AM) vector
H, = hgh,, p = 1 + m with the same module
hg. Each GD is connected the right trihedron of its
axes: unith,(3,) of the AM vector which position
is determined by anglg, in own device basis, the
unit g, of the GD suspension axis fixed in the BRF
Oxyz and unitp,(8,) = h,(8,) x gp. Normed toh,
vector of the GMC summary AM i&(8) = > h,,
where vector-columiB = {3,}. The unitm{(3,) =
ohy,(8y) /08, =g x h,(3,) of the GD#p gyroscopic
torque is always contrary with respect to upji(3,).
Collinear pair of the stop-less GDs was nangais-
sored Pair Ensembl¢SPE) in known original work
J.W. Crenshaw1973), and redundant multiply scheme
based on three collinear GD paira (= 6) was named
as3-SPE see (Somovet al, 2003) and fig[ [L. At the

M#(8,u®) = —H = —hgAn(B) u®; B=u® (12)

and the SC model as a free rigid body the simplified
controlled object is considered:

A=Aow/2; Ju+[wx]|G°=M8; B =us. (13)

Here all vectors and tensdrof the SC body inertia are
presented in the BRF, ar@®° = Jw + H(3) with the
GMC summary AM’s vectofH (3) = hyh(3).

At given the SC body angular programmed motion
AP(t), wP(t), el (t) =wP(t) with respect to the IREg
during time intervat € T}, and for forming the vector
of corresponding continuous control torgME8 (3, u®)



z=0 At introducing the denotations

\\ll/’ T2 = T1 + T2; Tag = T3+ Xa; Y12 = Y1 + Y2;

Tig = (x+A;)/2; w34 = (x—Ay)/2;

Yse = (Y +2y)/2; y12=(y — Ay)/2;

230 =(z+A.)/2; 256 =(z— A,)/2
and denotatiolA = {A,, A,, A} one can obtain the
Figure 2. Gramme determina@ for the GMC canonical scheme nonlinear vector equation (¢) = ®(h(t), A(t)). At
3-SPEat the vector explicit tuning la (6) with = 0.65. a known vectoih(¢) this equation have single solution
A(t), which is readily computed by method of a sim-
ple iteration. Further the units,(5,(¢)) and vector-
columnsg(t), B(t), B(t) are calculated by the explicit
analytical relation&/t € T),. Fig.[3 and fig[ # present
) ~ [ ~ dynamic characteristics of the SC’s SRM and the GMC
1Bp(D)] < g <0." |Bp(t)] < Vg, VE €Ty, (14) by 3-SPEscheme during timeé € T, = [0,7,] with
T, = 45 sec, for a possible limitatiofw(t)| < w, =

G “ NN
7 ‘ W’” : ,‘ Ys6 = Ys + Y65 234 = 23 + 245 256 = 25 + 26;
B ‘ \;' ' 3“‘\\ T1o = 212/ A —Yiy s Taa = 34/ /4 — 23y
5 .\ O 'v ‘ J‘H“ - -
. I";'ll;;;" ﬁ{g’ \‘\\\“ “\“.‘ T12 = y12/V/4 — 30%2 i Use = Yse/\/4 — Z§6;
: “ \ 2 components of the GMC explicit vector tuning law
U
N 2 II I ‘ \\\\\\\\ l i fp(ﬂ) = {fpl(/@)a fp2(/6)7 fp?)(ﬂ)} =0 (16)
are applied in the form
=2 Jo1(B) = T12 — T34 + p (T12 T34 — 1);
5 “_N - fo2(B) = Gs6 — 12 + p (Y56 J12 — 1);
NS ,»‘\&\}&\\’;iiii;.; St fo3(B) = Z34 — Zs6 + p (Z34 Z56 — 1).
ol The analytical proof have been elaborated that vector
1 tuning law [I6) ensures absent of singular states by this
;‘ . GMC scheme for all values of the GMC AM vector
e h(t) inside all its variation domain, see fg. 2.
1 For the representation

(19), the vector-columng and3 must be component-
wise module restricted:

where valuesi,, 1™ and v, are constant, ang =  2°/s and next boundary conditions:
1+6. Onboard algorithms have been developed forgy- 5, — (0.06255029449, —0.35479160599,
romoment SC guidance by its SRM on the explicit time —0.67663869314, —0.64216077108);
functionsA”(t), w”(t), (t) for the boundary condi- A . — (0.04168181290, —0.35479620846,
tions Q), G) and also for given condition —0.89901121936, _0.25330042320);
wo = {0.060345, 0.355995, 0.071572}° /s;
é(tl}) =¢ép= 5;; +ws X ey, (15) wy = {—0.084455, —0.333483,0.060107}°/s;

g0 = 1072 - {0.2960, —0.0643,0.0303}° /s%;
er =1072-{-0.2784;0.1417; —0.0074}°/s?;

which presents requirements tesmooth conjugation
P d L9 g = 102 - {0.05,0.38,0.01}°/s3.

of guidance by a SRM with guidance at next the SC's
spatial course motion (SCM), taking into account the
restrictions ) to vectorg(t) and 3(t) Developed 8 Synthesis of the gyromoment control law
approach to the problem is based on the SC approxi- For a fixed position of the SC flexible structures with
mate optimal motion with given boundary conditions some simplifying assumptions and T, = [to, +00)
@), (3) and[(1p). Here functions;(t) are selectedina  a SC angular motion model is as follows:

class of splines by five and six degree, moreover a mod-

ule of a angular rate3(¢) in a position transferi(=3) A=Ao w/2; A°{w, ) = {F¥ F1}, (17)
may be limited when functiong, (¢t) = ¢2(t) =0 and

P3(t) =w. zcons’t. The technique is based onthe gen-  pw_Mg(3 u) — wxG+M9+Q°;  B=us;
eralized integral’s properties for the AK&°(t) of the

mechanical system "SC+GMC” and allows to evaluate F?={—((6/m)Qd; + (])%¢;) + Q] (w. d;,4;)}-
vectors3(t), B(t), B(t) in analytical form for a preas- _

signed SC motiom (¢), w(t), &(t), &(t) Vt € Tp. Here vectorMY presents the external disturbance
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torques,Q° andQ?(w, g;,q;) are nonlinear functions,
and

e
o

AO—{ S Dq]; G=G"+Dgq;

Dfl I q={¢;,j =1+ng}.

Applied onboard measuring subsystem is based on in-
ertial gyro unit corrected by the fine fixed-head star
trackers. Applied contemporary filterirfg alignment 15
calibration algorithms and a discrete astatic observer i i ; ; i ; i i
give finally a fine discrete estimating the SC angular ° ™ * % #, % % © &
motion by the quaternion and angular rate vector, when
a measurement peridtl, = t;41 — ts < T, is mul-
tiply with respect to a control period;,,. The GMC
torque vectoiM® is presented in the form (12), where

ug(t) = a®Zh[Sat(Qutr(u),,by,),u."), T with a 9 Computer Simulation

do,, degls

Figure 5. The rate errors for consequence of the SC rotational ma-
neuver and a course motion

constante® and a control periodl;, = tx41 — tr, Fig.[§ presents some results on computer simulation of
keNy = [0,1,2,...); discrete functionmgk are out- digital gyromomemt control system for Russian remote
puts of nonlinear control law, and functiofst(x, a), sensing SC by th®esource-DKtype. Here the rate
Qutr(z, a) andZh[z, T] are general-usage ones. errors are represented at consequence of the SC spatial

Applied approach to synthesis of nonlinear control rotational maneuver for timee [0, 45) sec and the SC
system with a partial measurement of its state is basedcourse motion for time € [45, 90] sec.

on method of vector Lyapunov functions (VLF) in co-
operation with the exact feedback linearization (EFL)
technique.

In stage 1 the GMC control torque vectdvi® ([12)
and the SC simplest mode[ (]13) are considered. The
error quaternion i€ = (eg,e) = AP(t)oA, Euler
parameters’ vector i€ = {ep,e}, and the atti-
tude error’'s matrix i<C, = C(€) = I3 — 2[ex]|Q,,
whereQ, = Q(&) = Iseg + [ex] with det(Q.) =eo.

If error fw = @ in the rate vectow is defined as
@ = w—C.wP(t), and the GMC’s required control Acknowledgements
torque vectoiM® is formed as The work was supported by the RAS’ Presidium
ME = wx G 4 J(CowP (t) — [wx]Cow?(t) + 1), (Pr. 22), the Division on EMMCP of the RAS (Pr. 15,
17), and the RFBR (Grants 05-08-18175, 07-08-97611,
08-08-99101 and 08-08-00512).

10 Conclusion

Contemporary approaches and some new results were
presented on optimization of attitude guidance and
nonlinear robust gyromoment control applied for the
agile remote sensing spacecraft. These results were
also successfully applied for a SRM at transportation
of a flexible mechanical payload (Somov, 2006)

then the simplest nonlinear model for the SC’s attitude
error is as follows:
éo=—(e,@)/2; é=Q.w/2 & =n.

By the relationQ-!Qt = C.; Q-1 =Qt t/eo: References _
Q—yle: e/eo; Ifeeoge—l _ Q’t [(2;] wﬁiec:z:ae/uesoéd Branetz, B.N. and I.P. Shmyglevsky (1972)pplica-
for eg # 0, a non-local nonlinear coordinate transfor- t|0dn OILQukatelz;lons for Problems of Rigid Body Atti-
mation is applied at analytical synthesis by the EFL. Stu e a:; 6}' ZogggW'A Wi hesis of
That results to the nonlinear control law omov, Ye.l. (2006). Analytic synthesis of a pro-

- = A A G gramme gyromoment conrol by free-flying space ro-
m(€,w) = —Ao e Sgn(eo) — A1 @, bot. Conrol Problemg6), 72—78.

whereAo = ((2a5 — ©*/2)/e0)I3; A1 =ail3 — Reo, Somov, Ye.l. (2007). Optimization of a rotation maneu-
Sgn(eg) = (1, if eg > 0) Vv (=1, if eg < 0), matrix ver and synthesis of gyromoment guidance laws for
Re., = (e,@)Qlex]/(2e0), and constantsg,a; are spacecraft and free-flying robotgvestiya of Samara
calculated on spectruiy; = —a. + jw.. Simultane- Scientific Center RAS(3), 824-834.

ously the VFLv(€, w) is analytically constructed. Somov, Ye.l, S.A. Butyrin, A.V. Sorokin and V.N.

In stage 2 the problems of synthesising nonlinear Platonov (2003). Steering the spacecraft control mo-
control law are solved for mod¢I ([L7) of flexible space- ment gyroscope clusters. InProceedings of 10th
craft. Furthermore, the selection of parameters in the St.-Petersburg Internetional conference on integrated
structure of the GMC nonlinear robust control law is  navigation systemst.-Petersburg. pp. 403—419.
fulfilled by a multistage numerical analysis and para- Somov, Ye.l., S.A. Butyrin, S.Ye Somov and G.P. An-
metric optimization of the comparison system for the shakov (2007). Guidance and robust gyromoment at-
VLF. Thereto, the VLF have the structure derived titude control of agile flexible remote sensing space-
above for the error coordinat&s w and the structure of craft. In: Preprints of 17th IFAC Symposium on Au-
other VLF components in the form of sublinear norms tomatic control in Aerospace, Paper We-04-10N-
for vector variablesy(¢), q(¢)) using the vectof(t). ERA. Toulouse. pp. 1-6.
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