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Abstract— In this report we consider the dynamical system
that consist of one controlled object. The motion of this object
is described by linear discrete-time recurrent vector equation.
It is assumed that the set constraining control action is known
and is convex, closed and bounded polyhedron (with a finite
number of vertices) in the corresponding Euclidean vector
space. Under these assumptions, we formulate and solve the
optimal terminal control problem with a convex functional for
such linear discrete-time dynamical system. In order to solve
this problem we suggest a recurrent numerical algorithm which
reduce the initial multistep problem to solving a sequences of
direct and inverse one-step linear and convex programming
problems. The results obtained in this report can be used for
computer simulation of an actual physical processes and for
designing controlling and navigation systems.

I. I NTRODUCTION

In this report we consider the dynamical system that
consist of one controlled object. The motion of this object is
described by linear discrete-time recurrent vector equation. It
is assumed that the set constraining control action is known
and is convex, closed and bounded polyhedron (with a finite
number of vertices) in the corresponding Euclidean vector
space. Under these assumptions, we formulate and solve the
optimal terminal control problem with a convex functional
for such linear discrete-time dynamical system (see [1], [2]).
In order to solve of optimal terminal control problem we
suggest a recurrent numerical algorithm which reduce the
initial multistep problem to solving a sequence of direct and
inverse one-step linear and convex programming problems.
The results obtained in this report are based on [2]–[4] and
can be used for computer simulation of an actual techni-
cal and economics processes and for designing of optimal
digital controlling and navigation systems for technological
and transportation systems. Mathematical models of such
systems had considered, for example, in [1]–[5].

II. FORMULATION OF THE PROBLEM

On a given integer-valued time interval0, T =
{0, 1, · · · ,T} (T > 0) we consider the controlled dynamical
object, whose motion is described by the linear discrete-time
recurrent vector equation

x(t + 1) = A(t)x(t) + B(t)u(t), x(0) = x0. (1)

Here t ∈ 0, T− 1; x ∈ Rn is the phase vector of the
system(n ∈ Rn, whereN is the set of all natural numbers;
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for k ∈ N, Rk is the k-dimensional Euclidean space of
column vectors); initial vectorx(0) = x0 is fixed;u(t) ∈ Rp

is the vector of the control action (control), constrained by
the given set

u(t) ∈ U1 ⊂ Rp (p ∈ N : p ≤ n); (2)

A(t) andB(t) are real matrices of orders(n×n) and(n×p)
respectively, and such, that for allt ∈ 0, T− 1 the matrix
A(t) is assumed to be invertible, and therefore for it exist
corresponding inverse matrixA−1(t), and rank of the matrix
B(t) is equalp (dimension of the vectoru(t)); the setU1

is convex, closed, and bounded polyhedron (with a finite
number of vertices) in the spaceRp.

This control process performance is estimated by the
convex functional which determine on the terminal phase
states of the object and is continuously differentiable.

For a strict mathematical formulation of optimal terminal
control problem for the discrete-time dynamical system (1),
(2), we introduce some definitions.

For a fixed numberk ∈ N and τ, ϑ ⊆ 0,T (τ ≤ ϑ),
we denote bySk(τ, ϑ) the metric space of functionsϕ :
τ, ϑ −→ Rk of the integer argument, where the metricρk

is defined by

ρk(ϕ1(·), ϕ2(·)) = max
t∈τ,ϑ

‖ ϕ1(t)− ϕ2(t) ‖k

((ϕ1(·), ϕ2(·)) ∈ Sk(τ, ϑ)× Sk(τ, ϑ)),

and by comp(Sk(τ, ϑ)) we denote the set of all subsets of
the spaceSk(τ, ϑ) that are nonempty and compact in the
sense of this metric, and‖ · ‖k is the Euclidean norm in
Rk.

Using the constraint (2), we define the setU(τ, ϑ) ∈
comp(Sp(τ, ϑ− 1)) of all admissible program controls
u(·) = {u(t)}t∈τ,ϑ−1 on the time intervalτ, ϑ (τ < ϑ)
by

U(τ, ϑ) = {u(·) : u(·) ∈ Sp(τ, ϑ− 1),

∀ t ∈ τ, ϑ− 1, u(t) ∈ U1}.
Then for estimating the quality of the control process in

discrete-time dynamical system (1), (2) on the time interval
0, T we define the functionalγ0,T : Rn×U(0, T) −→ R1

in such a way that for any realization of the collection
(x0, u(·)) ∈ Rn × U(0, T), its value is defined by the
following terminal functional

γ0,T(x0, u(·)) = F(x(T)), (3)



where the vectorx(T) = x̃(T; 0, T, x0, u(·)), and F(x) is
the convex and continuously differentiable functional for all
vectorsx ∈ Rn. Here and below, bỹx(·; 0, T, x0, u(·)) ∈
Sn(0, T) we denote the trajectory of the object from the
initial phase statex0 ∈ Rn on the time interval0,T,
generated by the program controlu(·) ∈ U(0, T), namely

x̃(·; 0, T, x0, u(·)) = {x(·) : x(·) ∈ Sn(0,T), ∀ t ∈ 0, T− 1,

x(t + 1) = A(t)x(t) + B(t)u(t), x(0) = x0},
and will be denote bỹx(t; 0, T, x0, u(·)) ∈ Rn the section
of this trajectory at the time momentt ∈ 0, T.

Now we formulate the following multistep problem of
optimal terminal control for discrete-time dynamical system
(1)–(3).

Problem 1.For the initial phase statex0 of the controlled
discrete-time dynamical system (1)–(3), defined on the time
interval 0, T, it is required to find the setU(e)

γ0,T
(x0) of all

optimal controlsu(e)(·) ∈ U(0, T), such that the terminal
vectors x(e)(T) = x̃(T; 0, T, x0, u

(e)(·)) should supply a
minimum by the convex terminal functionalγ0,T, i.e. to
calculate the following set,

U(e)
γ0,T

(x0) = {u(e)(·) : u(e)(·) ∈ U(0, T),

min
u(·)∈U(0,T)

γ0,T(x0, u(·)) = γ0,T(x0, u
(e)(·)) =

= F(x(e)(T)) = F(x̃(T; 0, T, x0, u
(e)(·))) =

= min
u(·)∈U(0,T)

F(x̃(T; 0,T, x0, u(·))) = F(e)(x0)}, (4)

and to calculate the numberF(e)(x0), which is the optimal
value of the result for this problem, as realization of a finite
sequence of one-step operations only.

We mention that the solution of the formulated problem
exists, since it reduces to solving the problem of minimiza-
tion of the convex functionalF defined by the relation (3)
on a closed and boundary set fromRn, and to realization of
a finite sequence of one-step operations only.

III. G ENERAL SCHEME OF THE SOLUTION THE

PROBLEM 1

In this part of the report, we will develop analysis of
the multistep Problem 1 of optimal terminal control for the
discrete-time dynamical system (1)–(3) and description of a
general scheme of its solving.

Then for a fixed time intervalτ, ϑ ⊆ 0,T (τ < ϑ) and any
fixed collections(τ, X(τ)) ∈ {τ} × 2Rn

and (ϑ, X(ϑ)) ∈
{ϑ}×2Rn

(where here and below, for any setX we denote
by a symbol2X the set of all subset of the setX) we define
by virtue (1), (2) the following sets

X(+)(τ,X(τ), ϑ) = {x(ϑ) : x(ϑ) ∈ Rn, ∀ t ∈ τ, ϑ− 1,

x(t + 1) = A(t)x(t) + B(t)u(t),

x(τ) ∈ X(τ), u(t) ∈ U1}; (5)

X(−)(ϑ,X(ϑ), τ) = {x(τ) : x(τ) ∈ Rn,

∀ t ∈ {ϑ, ϑ− 1, · · · , τ + 2, τ + 1},

x(t− 1) = A−1(t− 1)[x(t)−B(t− 1)u(t− 1)],

x(ϑ) ∈ X(ϑ), u(t− 1) ∈ U1}, (6)

where the setX(+)(τ, X(τ), ϑ) is the direct attainability
domain [2] of the possible states of the phase vector the
object at the time momentϑ, which correspond the collec-
tion (τ,X(τ)), and the setX(−)(ϑ, X(ϑ), τ) is the inverse
attainability domain [2] of the possible states of the phase
vector the object at the time momentτ , which correspond
the collection(ϑ,X(ϑ)).

Let’s the convex functionalγ0,T, determined for the Prob-
lem 1 by the relation (3) such that its values we can calculate
using the functionalF, and it estimate the quality of the
control process in dynamical system (1), (2) on the time
interval 0,T.

And let’s the setX(+)(0, {x0}, T) ∈ 2Rn

is the direct
attainability domain of the object at the time momentT,
which correspond the collection(0, x0).

On the base of the above-mentioned constructions one can
proof that the solution of the Problem 1 can be represented
in the form of the solutions the following three problems:

1) the construction of the direct attainability domain
X(+)(0, {x0}, T) (it’s solved with using of a direct con-
struction which is realizing as a finite sequence of one-step
operations only);

2) the minimization of the convex functionalF :
Rn −→ R1 determined by the relation (3) on the set
X(+)(0, {x0}, T), i.e. the construction of the setX

(e)
F (T) of

all terminal phase vectorsx(e)(T) of the object and which
is determine by formula

X
(e)
F (T) = {x(e)(T) : x(e)(T) ∈ X(+)(0, {x0},T),

F(x(e)(T)) = min
x(T)∈X(+)(0,{x0},T)

F(x(T)) =

= F(e)(x0)} (7)

(it reduce to solving of the convex programming problem
which is realizing as a finite sequence of one-step operations
only, this problem is solved by using, for example, the
algorithm of the Zoutendijk method, the case of linear
constraints in the form of inequalities, see, for example, [7]);

3) the solving on time interval0, T the two-point boundary
value problem for the discrete-time dynamical system (1),
(2) under the boundary conditionsx(0) = x0 and x(T) =



x(e)(T) ∈ X
(e)
F (T), namely, the construction the following

set

U(e)(0,T, {x0}, X(e)
F (T)) = {u(e)(·) : u(e)(·) ∈ U(0, T),

x(e)(T) = x̃(T; 0, T, x0, u
(e)(·)) ∈ X

(e)
F (T)} =

= U(e)
γ0,T

(x0) (8)

of all optimal controls on its time interval (it’s solved with
the combine of the direct and inverse recurrent procedures
which is realizing as a finite sequence of one-step operations
only).

Below we will make analysis of the general elements and
possible a directions of solves these subproblems.

We fix the time intervalτ, ϑ ⊆ 0, T (τ < ϑ) and collection
(t − 1, X(t − 1)) ∈ τ, ϑ− 1 × 2Rn

, where X(t − 1) is
a convex, closed, and bounded polyhedron (with a finite
number of vertices) in the spaceRn. Let the setX(+)(t) =
X(+)(t − 1, X(t − 1), t) correspond the definition (5), i.e.
is the direct attainability domain of the object corresponding
the collection(t − 1, X(t − 1)) at time momentt. Then, it
follows from the definition (5) and the above assumptions
that for all t ∈ τ + 1, ϑ the setX(+)(t) is a convex, closed,
and bounded polyhedron (with a finite number of vertices) in
the spaceRn. It is also known (see, for example, [6]), that
any pointx of the convex, closed, and bounded polyhedron
X(+)(t) is represented as

x =
nt∑

i=1

αix
(i)
∗ ,

nt∑

i=1

αi = 1, αi ≥ 0, i ∈ 1, nt,

where{x(i)
∗ }i∈1,nt

is the set of all vertices of the polyhedron
X(+)(t) and nt is the number of its vertices. Then, if we
know the vertices of the setX(+)(t), this set is constructed.

Now we assume that the setX(t−1) is already constructed
(t ∈ τ + 1, ϑ). Then one can easily prove the following
auxiliary assertion.

Lemma 1:Let on the fix time intervalτ, ϑ ⊆ 0, T (τ < ϑ)
for t ∈ τ + 1, ϑ the setX(t − 1) is a convex, closed, and
bounded polyhedron (with a finite number of vertices) in the
spaceRn and on the base of the equation (1) is constructing
the following sets:

X̄(+)
n (t) = {x̄(t) : x̄(t) ∈ Rn,

x̄(t) = A(t− 1)x(t− 1), x(t− 1) ∈ X(t− 1)};
X̂(+)

n (t) = {x̂(t) : x̂(t) ∈ Rn,

x̂(t) = A(t− 1)x(t− 1), x(t− 1) ∈ Γn(X(t− 1))}.
ThenΓn(X̄(+)

n (t)) = Γn(conX̂
(+)
n (t)).

Here and below,Γm(M) is the set of all vertices of the
polyhedronM ⊂ Rm, m ∈ N, and comM is the convex
hull of this set.

We formulate a similar assertion for the controlling part
of the equation (1).

Lemma 2:Let on the fix time intervalτ, ϑ ⊆ 0,T (τ < ϑ)
for t ∈ τ + 1, ϑ on the base (1), (2) are constructing the
following sets:

Ȳ (+)
n (t) = {ȳ(t) : ȳ(t) ∈ Rn,

ȳ(t) = B(t− 1)u(t− 1), u(t− 1) ∈ U1};
Ŷ (+)

n (t) = {ŷ(t) : ŷ(t) ∈ Rn,

ŷ(t) = B(t− 1)u(t− 1), u(t− 1) ∈ Γp(U1)}.
ThenΓn(Ȳ (+)

n (t)) = Γn(conŶ
(+)
n (t)).

On the base of Lemmas 1 and 2 one can prove, that the
following assertion is valid (see [4]).

Theorem 1:Let on the fix time intervalτ, ϑ ⊆ 0,T (τ <
ϑ) for t ∈ τ + 1, ϑ the setX(t− 1) is a convex, closed, and
bounded polyhedron (with a finite number of vertices) in the
spaceRn and the setX̃(+)(t) is constructing in the form

X̃(+)(t) = {x̃(t) : x̃(t) ∈ Rn, x̃(t) = x̂(t) + ŷ(t),

x̂(t) ∈ X̂(+)
n (t), ŷ(t) ∈ Ŷ (+)

n (t)}.
Then it’s valid the following equality

X(+)(t) = X(+)(t− 1, X(t− 1), t) = conX̃(+)(t).

By analogy, one can prove, that the following assertion is
valid.

Theorem 2:Let on the fix time intervalτ, ϑ ⊆ 0,T
(τ < ϑ) for t ∈ {ϑ, ϑ − 1, · · · , τ + 2, τ + 1} the setX(t)
is a convex, closed, and bounded polyhedron (with a finite
number of vertices) in the spaceRn and the setX̃(−)(t−1)
is constructing in the form

X̃(−)(t− 1) = {x̃(t− 1) : x̃(t− 1) ∈ Rn,

x̃(t− 1) = x̂(t− 1) + ŷ(t− 1),

x̂(t− 1) ∈ X̂(−)
n (t− 1), ŷ(t− 1) ∈ Ŷ (−)

n (t− 1)},
where the setŝX(−)

n (t−1) andŶ
(−)
n (t−1) are constructing

by the following formulas

X̂(−)
n (t− 1) = {x̂(t− 1) : x̂(t− 1) ∈ Rn,

x̂(t− 1) = A−1(t− 1)x(t), x(t) ∈ Γn(X(t))},
Ŷ (−)

n (t− 1) = {ŷ(t− 1) : ŷ(t− 1) ∈ Rn,

ŷ(t−1) = −A−1(t−1)·B(t−1)u(t−1), u(t−1) ∈ Γp(U1)}.

Then it’s valid the following equality

X(−)(t− 1) = X(−)(t,X(t), t− 1) = conX̃(−)(t− 1).

Note that on the base of the Theorems 1 and 2, and granting
that the recurrent system (1), (2), which is described by the



motion of the object, is linear, for the direct attainability
domainX(+)(τ, X(τ), ϑ) ∈ 2Rn

of the object and its inverse
attainability domainX(−)(ϑ,X(ϑ), τ) ∈ 2Rn

, which are
defined by the relations (5) and (6) respectively, the following
assertion is valid (see [4]).

Lemma 3:Let on the fix time intervalτ, ϑ ⊆ 0, T (τ < ϑ)
for collections(τ, X(τ)) ∈ {τ} × 2Rn

and (ϑ, X(ϑ)) ∈
{ϑ} × 2Rn

, where the setsX(τ) and X(ϑ) are a convex,
closed, and bounded polyhedrons (with a finite number
of vertices) in the spaceRn, the attainability domains
X(+)(τ,X(τ), ϑ) ∈ 2Rn

and X(−)(ϑ,X(ϑ), τ) ∈ 2Rn

of
the object are defined by the relations (5) and (6) respec-
tively. Then from the above assumptions for elements of the
discrete-time dynamical system (1), (2) one can easily prove
the following properties for these domains:

1) for all t ∈ τ + 1, ϑ the setX(+)(τ, X(τ), t) = X(+)(t)
is a convex, closed, and bounded polyhedron (with a finite
number of vertices) in the spaceRn;

2) for all t ∈ τ, ϑ− 1 andX(+)(τ) = X(τ) it’s true the
following recurrent relation

X(+)(τ, X(τ), t + 1) = X(+)(t,X(+)(t), t + 1); (9)

3) for all t ∈ τ, ϑ− 1 the setX(−)(ϑ,X(ϑ), t) = X(−)(t)
is a convex, closed, and bounded polyhedron (with a finite
number of vertices) in the spaceRn;

4) for all t ∈ τ + 1, ϑ andX(−)(ϑ) = X(ϑ) it’s true the
following recurrent relation

X(−)(ϑ, X(ϑ), t− 1) = X(−)(t,X(−)(t), t− 1). (10)

Then from the relations (9) and (10) of this
assertion it follows that multistep problems of the
construction the direct attainability domainX(+)(τ,
X(τ), ϑ) ∈ 2Rn

of the object and
it inverse attainability domain X(−)(ϑ,
X(ϑ), τ) ∈ 2Rn

one can realize as a finite recurrent
sequences only one-step problems constructing of the
corresponding following attainability domains:

X(+)(t + 1) = X(+)(t,X(+)(t), t + 1),

t ∈ τ, ϑ− 1, X(+)(τ) = X(τ); (11)

X(−)(t− 1) = X(−)(t,X(−)(t), t− 1),

t ∈ {ϑ, ϑ− 1, · · · , τ + 2, τ + 1}, X(−)(ϑ) = X(ϑ). (12)

Now on the base of the definitions (5) and (6) for all
t ∈ τ + 1, ϑ− 1 we may construct the following sets:

X(e)
t (τ, ϑ,X(τ), X(ϑ)) =

= X(+)(τ, X(τ), t)
⋂

X(−)(ϑ,X(ϑ), t), (13)

where the setsX(τ) and X(ϑ) are a convex, closed, and
bounded polyhedrons (with a finite number of vertices) in
the spaceRn.

Then on the base of the Theorems 1 and 2, and Lemma’s 3,
one can prove that the following auxiliary assertion is valid.

Lemma 4:Let on the fix time intervalτ, ϑ ⊆ 0,T (τ <
ϑ) the setsX(τ) and X(ϑ) are a convex, closed, and
bounded polyhedrons (with a finite number of vertices) in
the spaceRn, then the setX(e)

t (τ, ϑ,X(τ), X(ϑ)) defined
for all t ∈ τ + 1, ϑ− 1 by the formula (13) is a convex,
closed, and bounded polyhedron (with a finite number of
vertices) in the spaceRn and can be constructing as the
realization of a finite sequence of one-step operations only.

From the above definitions and constructions (5)–(13), and
assertions it follows that is true the following assertion
— necessary and sufficient condition for solving of the
Problem 1.

Theorem 3:For a fixed time interval0,T (0 < T),
and initial phase statex0 of the controlled discrete-time
dynamical system (1)–(3), and the setX

(e)
F (T) ∈ 2Rn

, which
is defined by the relation (8) and is a convex, closed, and
bounded polyhedron (with a finite number of vertices) in the
spaceRn, and therefore it’s the set of the optimal terminal
states of the object, let the setŨ(e)(0, T, {x0}, X(e)

F (T)) ⊆
U(0,T) determined on the base (13), and constructed by the
following recurrent relation

Ũ(e)(0,T, {x0}, X(e)
F (T)) = {u(e)(·) :

u(e)(·) ∈ U(0, T), ∀ t ∈ 0, T− 1,

x(e)(t + 1) = A(t)x(e)(t) + B(t)u(e)(t) ∈
∈ X(e)

t+1(0, T, {x0}, X(e)
F (T)),

x(e)(0) = x0, x(e)(T) ∈ X
(e)
F (T)}.

Then the controlu(e)(·) ∈ Ũ(e)(0, T, {x0}, X(e)
T (T)) is the

solution of the two-point boundary value problem for the
recurrent equation (1) on the time interval0, T under the
boundary conditionsx(0) = x0 and x(T) ∈ X

(e)
F (T),

therefore it’s optimal control for the Problem 1, and i.e. it
exist and satisfy the following inclusion

u(e)(·) ∈ U(e)(0, T, {x0}, X(e)
F (T)) 6= ∅,

then and only then, when it satisfy the inclusion

u(e)(·) ∈ Ũ(e)(0, T, {x0}, X(e)
F (T)) 6= ∅,

and therefore the following equality is true

U(e)
γ0,T

(x0) = U(e)(0,T, {x0}, X(e)
F (T)) =

= Ũ(e)(0,T, {x0}, X(e)
F (T)),

and this set and the numberF(e)(x0), which is the optimal
value of the result for the Problem 1, and is defined by the



relation (4), are calculate as realizations of a finite sequences
of one-step operations only.

Note, that the solving of the Problem 1, i.e. the solving
of the problem of the constructing the setŨ(e)(0, T, {x0},
X

(e)
F (T)) of optimal program controls on the time interval

0, T, is formed as constructive procedure — as realization of
the finite recurrent sequence of the one-step operations only.

On the above constructions and assertions we can make
the following conclusion, that the solving of the Problem 1
— optimal terminal control for discrete-time dynamical
system (1)–(3), we can reduce to realizing of solving of the
subproblems 1)–3). Note, that on the base of the Theorem 3
the realization of the solving of these subproblems is a finite
recurrent sequence of the one-step operations only, and linear
and convex programming problems.

IV. CONCLUSION

In this report for solving the Problem 1 of optimal ter-
minal control for discrete-time dynamical system (1)–(3),
we propose a recurrent algorithm, which reduces the mul-
tistep Problem 1 to realization of the sequence of one-step
optimization problems of linear and convex programming,
i.e. to realization of the finite recurrent sequence of one-
step operations only. We note that for this algorithm the
dimension of the discrete-time dynamical system (1)–(3) and
the number of the control process steps are limited only by
the memory and speed of the computer. The results obtained
in this report are based on [2]–[4] and can be used for
computer simulation of an actual economics processes and
for designing of optimal digital controlling and navigation
systems for technological and transportation systems.
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