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Abstract
A unified modelling procedure is proposed to jointly

interpret the variations observed in geophysical data
and to properly take into account the relationship be-
tween the intrusive processes and the geophysical vari-
ations expected at the ground surface. We focus on
the joint inversion of geophysical data by a procedure
based on Artificial Neural Network (ANN) for the esti-
mation of the volcanic source parameters. As forward
model, we developed a 3D numerical model based on
Finite Element Method (FEM) for computing ground
deformation, magnetic and gravity changes caused by
magmatic overpressure sources, with the aim to con-
sider a more realistic description of Etna volcano, in-
cluding the effects of topography and medium hetero-
geneities.
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1 Introduction
Geodetic and potential fields investigations have been

playing an increasingly important role in Mt. Etna
eruptive processes ([Bonaccorso et al, 1999]; [Bon-
forte et al, 2008]; [Del Negro et al, 2004]; [Napoli
et al, 2008]; [Carbone et al, 2007]; [Carbone et al,
2008]). The amount of available data collected repre-
sents a valuable database, but limited efforts have been
made for an effective integration of different data. Even
if complicated models have been proposed, ground de-

formation, magnetic and gravity data are usually inter-
preted separately from each other and the joint mod-
elling has remained elusive, despite the obvious ben-
efit in constraining the solution. When the cause of
their variations can be ascribed to the same volcanic
source, a joint inversion would be advisable in order
to identify the source parameters with a greater degree
of confidence [Nunnari et al, 2001]. For an integrated
inversion modelling, complex inverse methods are re-
quired to combine forward models with appropriate op-
timization algorithms and automatically find the best
set of parameters that well matches the available obser-
vations. Hence, the rationale of the inversion modelling
approach requires: (i) solution of forward models, (ii)
numerical inversion procedure. The forward problem
consists in deriving a relationship between sources and
observations. Over the last decades, straightforward
analytical solutions for simplified geometric sources
have been devised under the assumption of homoge-
neous elastic half-space medium ([Mogi, 1958]; [Sa-
sai, 1991]; [Hagiwara, 1977]). To overcome this in-
trinsic limitation and provide more realistic models,
which consider various geometries as well as compli-
cated distribution of medium properties, numerical so-
lutions can be investigated. With the aim to consider a
more realistic description of Mt Etna, we developed a
numerical procedure based on Finite Element Method
(FEM) to evaluate geophysical changes caused by over-
pressure source in a 3D formulation. The FEM-based
numerical model is able to include not only compli-
cated distribution of both rock magnetization and elas-



tic rigidity, but also the real topography of the studied
area, that are responsible for significant effects [Cur-
renti et al, 2007]. We investigate the ability of an in-
version procedure based on Artificial Neural Networks
(ANNs) for the estimation of the volcanic source pa-
rameters from magnetic, gravity and ground deforma-
tion data. Artificial Neural networks have been used
to invert geophysical models based on analytical mod-
els, because once the network is trained, the inversion
process requires a very short time, while in traditional
optimization algorithm the whole search procedure has
to be reiterated. Numerical models are not often used to
train neural network for inversion because of the high
computational time to obtain the solution of forward
model. We performed a hybrid inversion in which neu-
ral networks are trained with numerical patterns, ob-
tained using Finite Element Method. Synthetic mod-
elling is performed in order to provide a data set large
enough to represent the training and testing sets of the
possible models within the model space. Multilayer
perceptrons (MPLs), once correctly trained, can solve
the inversion problem very fast and with an appreciable
degree of accuracy.

2 Forward Numerical Model
As forward models, we developed a numerical proce-

dure based on Finite Element Method (FEM) to evalu-
ate geophysical changes caused by spherical overpres-
sure sources that are quite appropriate for modelling
inflation/deflation of magma reservoirs. We used the
software Pylith to solve the elastostatic problem for the
elastic deformation field [Mogi, 1958]. A computa-
tional domain of a 100x100x50 km is considered for
the deformation calculation. As for boundary condi-
tions, horizontal and vertical displacements are fixed
to zero at the lateral and bottom boundaries respec-
tively, representing the vanish displacement at the infin-
ity. The upper boundary is stress free and represents the
ground surface. The accuracy of the numerical solution
strongly depends on the mesh resolution and the com-
putational domain size. To properly set up the model,
benchmark tests are carried out comparing the numer-
ical solutions of deformation field in a homogeneous
half-space with the analytical ones. The analytical so-
lutions of the elastostatic problems are obtained using
the simple and common Mogi model embedded in a
homogeneous Poisson’s medium [Mogi, 1958]. After
benchmark tests were carried out, we used numerical
model including medium heterogeneities and irregu-
lar topography to model a more realistic description of
Mt. Etna. As magnetic effect generated by a pressure
source, we analyzed the thermomagnetic effect. Ther-
momagnetic field changes are due to thermal demagne-
tization or remagnetization due to temperature changes
of rocks. When temperature exceeds Curie point, rocks
lose their magnetization and then modify the intensity
of superficial magnetic field. The magnetic change is
expressed as follows:

∆T = ∆Mm

4πr2

{
1− 3(xr cos I − z

r sin I)2
}

∆Mm = 4
3πr

3m
(1)

Where ∆Mm is the magnetic moment, R is the radius
of the sphere, m is the magnetization, I is the magnetic
inclination. Gravity field changes are due to additional
mass input at some depth. Migration of magmatic mass
generates a density variation that can be observed at
the surface through gravity field measures. The gravity
change due to input of new mass in a spherical source
is expressed as follows:

∆g = G∆Mg
z

(x2+y2+z2)
3
2

∆Mg = 4
3πr

3∆ρ
(2)

where ∆Mg is the mass change, ρ is the density con-
trast, G is the gravitational constant. Using the for-
ward model described above, we generated a synthetic
set of deformation, magnetic and gravity data for train-
ing the neural network and find out if multilayer per-
ceptrons (MPLs) could approximate without ambiguity
the complex relation between geophysical observations
and source parameters. Inversion algorithms based on
classic analytical models, that neglect the complexities
associated with morphology and medium properties of
volcano edifice, could provide an inaccurate estimate
of source parameters. Then we implemented numer-
ical inversion training the network with numeric pat-
terns, that can include the real effects of topography
and medium heterogeneity. The procedure of pattern
generation is divided in several step and is executed
automatically. First the computational domain of Mt.
Etna is meshed into 598948 isoparametric and arbitrar-
ily distorted tetrahedral elements connected by 103424
nodes. The domain mesh, showed in Fig. 1, generated
with the software LaGrit, has a spatial resolution that
reaches 300m in the area where the topographic relief
is sharper and in the area where the sources are located.
Then the parameters of the sources are generated with

random distribution in the ranges reported in Table 1.
The volume where the pressure sources are located
contains the position of all the pressure sources active
during the last decades [Bonforte et al, 2008].
Once all the patterns are defined, the meshed sources

are iteratively introduced in the domain mesh to finally
obtain 1050 complete meshes. Every mesh is char-
acterized by the source in a different random position
that is contained in the range reported in Table 1. The
numerical solutions are calculated applying a pressure
of 100MPa to the source wall and then rescaling them
with the random values of ∆V , assuming valid the hy-
pothesis of point source. For each simulation, com-
puted using PyLith, the accuracy was warranted check-
ing the convergency of the FEM solution. The itera-
tion of GMRES solver is stopped when a threshold of



Figure 1. Mesh of the computational domain.

10−9 is reached or the number of iterations is higher
than 200. By a linear speedup on a cluster of 20 nodes
the computing time reduces from 10 days to 12 hours.
At the end solutions have been interpolated at the co-
ordinates of the stations of deformation, magnetic and
gravity network on Mt. Etna, which map is reported in
Fig. 2. The rectangle corresponds to the projection on
surface of the volume where the sources are located.

3 ANN Based Inverse Model
Inverse modelling with MLP Artificial Neural Net-

works (ANNs) can be formalised as follows. Let M be
a model whose parameters are indicated by x and the
associated output data by d. The inverse modeling can
be formally indicated as x = f−1(d), in the hypothesis
that f−1 exists. In practical situations, it is possible to
approach the inverse problem numerically: the forward
model f() is used to generate synthetic data di corre-
sponding to model parameters xi, (randomly chosen in
the space of parameters). At the same time the pairs
(di, xi) are used to approximate the inverse model by
approximating f−1(.) by using an approximating func-
tion of the form:

Source Parameters Minimum Maximum

XC [km] 496 502

YC [km] 4175 4183

ZC [km] -9 -1

∆V [m3] 5 106 10 106

∆Mg[kg] 3 109 150 109

∆Mm [Am] 1 109 4 109

Table 1. Ranges of the random generated parameters of the source.

fa(x) =

NH∑
j=1

cjφ(wTj x+ tj) + c0 (3)

where φ(.) represents the sigmoid function (i.e.
φ(z) = 1/(1 + e−z)), x is the MLP input vector,
wj is a vector of coefficients (weight of the connec-
tions), and cj , tj are additional adjustable coefficients.
The main advantage of inverting with MLP neural net-
work consists in the availability of an approximation of
f−1 thus allowing speeding up the computation of the
source parameters that best fits the observed data. The
availability of this function allows avoiding a search
for the minimum, as happens with a traditional optimi-
sation algorithm such as GAs. As traditional optimi-
sation algorithms cannot learn, i.e. they cannot bene-
fit from solutions obtained previously for similar prob-
lems and each new inversion requires the whole search
procedure to be re-iterated. Once the neural network
has been trained, it is able to approximate the f−1

function and to identify, for a set of geophysical ob-
servations, the source parameters that better reproduce
these variations. The neural network used for the in-
version is a three layered network, with 29 inputs (the
three component of deformation field, thermomagnetic
field and gravity filed at the network stations), 20 hid-
den neurons, 6 outputs (position of the source, volume
change, mass change, magnetic momentum). The de-
formation inputs are rescaled performing the quantities
ux/uz, uy/uz uz instead of ux, uy, uz, so that the an-
alytic function that links the first two quantities with
the source parameters becomes easier to be interpo-

Figure 2. Deformation, gravity and magnetic monitoring network
on Mt. Etna.



Deformation
(Analytic)

Deformation
(Numeric)

Integrated
(Numeric)

XC [m] 239.44 648.78 224.24

YC [m] 301.05 807.42 620.62

ZC [m] 329.99 672.24 335.80

∆V [m3] 0.1 106 0.18 106 0.25 106

∆Mg[kg] - - 0.31 109

∆Mm

[Am]
- - 0.07 109

Table 2. Performance index RMSE for the inversion of analytic and
numeric deformation model and for the integrated numeric model.

lated. The outputs are normalized linearly to finally
obtain values in the range [-1;1]. The ANN is trained
with numerical patterns, obtained using Finite Element
Method. Then the inverse function is tested with a data
set that was not used previously for training. The per-
formance index used to test the results is the root mean
square error, which expression is:

RMSE =

√√√√ 1

N

N∑
i=1

(Pi −Oi)2 (4)

where Pi is the calculated value, Oi is the observed
value, N is the dimension of data set. We performed
the inversion of deformation data for the analytical and
numerical solution, to compare the accuracy of the two
results. The we inverted deformation, magnetic and
gravity data together to investigate if the integrated ap-
proach allows for a more accurate solution. The per-
formance index of the three cases are reported in Table
2.
Numerical and analytical inversion of deformation

data provide similar results, demonstrating that also the
numerical problem can be inverted with good accuracy,
even if the inverse function to interpolate is more com-
plicated because of complex distribution of heterogene-
ity and irregular topography. The mean square errors
related to the integrated inversion are smaller than those
obtained inverting only deformation data, evidencing
the advantages of the integrated approach. This ap-
proach, involving geophysical data of different kinds,
allows for a more accurate solution than when ground
deformation data alone is considered.

4 ANN Based Inverse Model
The main problem in numerical inversion is the high

computational time necessary to obtain the solution of
forward model. In any optimization algorithm, every
iteration the domain has to be meshed again (assuming
variable the geometry or position of the source) and the

FEM problem has to be solved, requiring a significant
computational effort. If we wish to compute the geo-
physical changes for a large number of models for in-
version, analytical models are quite attractive because
they are inexpensive to compute. Ideally, we would like
a method that retains the computational convenience
of analytical solutions but is also capable of includ-
ing, at least approximately, the effects of topography
and heterogeneity. The Artificial Neural Networks can
be trained to map the forward numerical model, with
the aim to obtain an approximate immediate solution
of forward model to be used in any inversion algorithm.
Therefore this method permits to overcome the intrin-
sic limitation of neural approach for inversion that is
the dependence on stations configurations: being the
structure of the neural network fixed, if a station doesnt
work or if a new station is added the neural network has
to be trained again, while mapping the forward model
independently for any station, the inverse process be-
comes much flexible even for variations of the config-
uration of the stations. The neural network was trained
to interpolate the function , where ui is the deforma-
tion at i-th station, Xc, Y c, Zc give the position of the
source, xi, yi are the coordinates of the station. Once
the network is trained, we obtain the solution of the
forward model and the inversion can be made with any
technique at a second time. We computed the mapping
of numerical models for two station, one in the summit
of volcano and the other at a lower altitude. As perfor-
mance index we also computed a normalized misfit, to
have a normalized measure of the error, which expres-
sion is:

Eabs% =

∑
|uobs − ucalc|∑
|uobs|

100% (5)

The results are reported in Table 3.

Station 8
X=498.810
km
Y=4177.400
km

Station 10
X=492.820
km
Y=4175.400
km

RMSE [m]

ux 6.51 10−6 3.70 10−6

uy 7.72 10−6 2.50 10−6

uz 9.12 10−6 2.30 10−6

Normalized
misfit [%]

ux 11.9 6.03

uy 10.9 7.75

uz 6.90 5.03

Table 3. Performance indexes RMSE and normalized misfit for two
stations, located near and far from the summit of volcano.



The results show that the neural network can map with
good precision the forward numerical model of defor-
mation field. It is worth noting that results at station 10,
that is located out from the summit, are characterized
by a smaller error than that related to a summit station,
where numerical solution is strongly influenced by to-
pography and heterogeneity (Fig.2). This result evi-
dences the significant effect that these parameters could
have on the solution.

5 Conclusions
A hybrid approach is proposed using neural networks

and numerical FEM models for geophysical mod-
elling. This method permits to interpret geophysical
data avoiding the intrinsic limitation of analytical solu-
tions and providing a more realistic description of vol-
canic processes. Firstly, ANN is used in inverse scheme
to identify the source parameters from geophysical ob-
servations. The results show that, notwithstanding the
high nonlinearity of the considered inverse problems,
it can be unambiguously solved with acceptable accu-
racy. The work highlights the usefulness of integrated
version of geophysical data, that permits to constrain
the solution better than when single data type are con-
sidered. Secondly, neural approach is also used to map
the forward numerical model, reducing the high com-
putational time usually necessary to run the forward
model in inversion problems. This approach permits
to have a straightforward solution of numerical model,
that can substitute the analytical solution in any in-
version technique, providing a more realistic descrip-
tion of geophysical changes in volcanic area by taking
into account the real topography and medium hetero-
geneities.
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