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Abstract 

The paper presents an approach to the input/output 
system identification under the condition that no ana-
lytical model representation of the system is assumed 
to be known. Within the approach, the key issue of 
the problem is a proper handling of inherent depend-
ence between the input and output variables of the 
system. Using a consistent measure of stochastic de-
pendence of random processes has been proposed 
within the identification scheme. The measure of de-
pendence is the maximal correlation function. It prop-
erly reflects actual nonlinear dependence between 
random processes, while those of based on the disper-
sion and, moreover, ordinary product correlation 
functions do not. In addition, the measure directly 
leads to determining the input/output relationship of 
the investigated system. Within the approach, a de-
gree of the system nonlinearity based on the maximal 
correlation is proposed. 
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1 Introduction 
Conventionally, nonlinear system identification sig-

nificantly uses a priori assumptions with respect to the 
system model. The assumptions usually consider the 
system model to belong to a specific model class. 
However, for a number of cases, body of such knowl-
edge may be considerably restricted. The cases imply 
elaborating techniques which might decrease depend-
ence of the identification results on the a priori as-
sumptions. Also, such an identification procedure is 
to lead to a flexible model, i.e. the model is to de-
scribe rather rich class of nonlinear systems. The rea-
sons motivate deriving generalized enough and, cor-

respondingly, unified approaches to nonlinear system 
identification.  

The paper presents an approach to nonlinear sto-
chastic system identification based on using a consis-
tent measure of dependence of random processes. The 
approach is shown to lead to deriving a general in-
put/output system description when no analytical 
model of the system is available. 

2 An Analysis of measures of dependence used 
within applied problems 

The basic concept of the approach proposed within 
the paper is based on the assumption that identifica-
tion problem is to be solved for systems which have 
no completely formalized analytical model. At the 
same time, from a system theory point of view, the 
system behavior may be considered in terms of in-
put/output description involving available for obser-
vation input and output variables reflecting significant 
features of the systems. Even if no exact analytical 
model of the input/output relationship between the 
variables is stated, obviously, there should always 
exist an inherent link which reflects dependence of 
the output variables on the input ones.  

When modeling under influence of various uncer-
tainty factors, it is conventional to use stochastic 
framework assuming the input and output variables to 
be random processes. In addition, one should also 
assume the investigated link between input and output 
processes to be nonlinear. For stochastic case, a natu-
ral way to establish an approximate empirical in-
put/output relationship is using measures of stochastic 
dependence of random processes. Among various 
measures of dependence, the product correlation func-
tions are well known and commonly used. However, 
these may vanish even provided that a deterministic 
dependence between input and output processes ex-
ists. In fact [Rajbman, 1981], let a continuous time 



system subject to identification be as in figure 1, with 
( ) =)(txf )(2 tx , )()( ttg δ= . Here )(tδ  stands for 

the delta-function.  

 x(t)                                                   y(t)
g(t)f(•)

 

Figure 1. An example leading to vanishing cross cor-
relation. 

Let, again, the input x(t) be a stationary Gaussian 
process with zero mean and unit variance. For the 
case, ordinary statistical linearization approach to 
determine the weight function g(t) leads to the corre-
lation equation 
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t

t
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with ),( stK yx  being the cross-correlation function of 

the processes y(t) and x(s), and ),( svK xx  being the 
auto-correlation function of the process x(s). How-
ever, within the example statement, for the centered 
random Gaussian processes, 0),( =stK yx . Hence, 

the required solution of the correlation equation is 
zero-valued function ),(* stg , i.e. 0),(* ≡stg , with 
mean-squared error of the output approximation by 
the expression =)(ty )(2 tx  corresponding to 

0),(* =stg  being 3)(2 =tyM . Throughout the pa-

per symbols •M , )(•D , { }••M , and ),( ••cov  will 

respectively stand for mathematical expectation, vari-
ance, conditional expectation, and covariance. 

A similar result of linear approximation of the sys-
tem above may be obtained for odd transformation 

)(•f : )(3)(5)( 3 txtxty −= , with marginal distribu-
tion of x(t) being uniform at the interval ( )1,1 +−  [Ré-
nyi, 1959a]. 

In [Rényi, 1959a], seven axioms which are seemed 
to be the most natural for a measure of dependence 
( )YX ,μ  between two random variables X and Y has 

been formulated. These are: 
A) ( )YX ,μ  is defined for any pair of random vari-

ables X and Y, neither of them being constant with 
probability 1; 

B) ( )YX ,μ = ( )XY ,μ ; 
C) ( ) 1,0 ≤≤ YXμ ; 
D) ( ) 0, =YXμ  if and only if X and Y are inde-

pendent; 

E) ( ) 1, =YXμ if there is a strict dependence be-
tween X and Y, i.e. either )(XY ϕ=  or )(YX ψ=  
where ϕ and ψ are Borel-measurable functions; 

F) If a Borel-measurable functions ϕ and ψ map the 
real axis in a one-to-one way onto itself, 
( ) ( )YXYX ,)(),( μψϕμ = ; 
G) If the joint distribution of X and Y is normal, 

then ( ) ( )YXrYX ,, =μ , where ( )YXr ,  is the ordi-
nary correlation coefficient of X and Y. 

Commonly used measures of dependence are the 
ordinary correlation coefficient, the correlation ratio 
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D(Y), and the maximal correlation coefficient 
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with here and below supremum being taken over 
Borel-measurable functions {B} and {C}, and 

{ }BB∈ , { }CC∈ . 
Rényi [1959a] has shown the only ( )YXS , to sat-

isfy all the above axioms, while ( )YXr ,  and 
( )YX ,θ  do not, in particular, the correlation coeffi-

cient does not meet axioms D, E, F, and the correla-
tion ratio does not meet axioms D and F. 

When investigating random processes, the above 
coefficients are transformed to the corresponding 
functions. As shown above, the ordinary product cor-
relation functions are not the exhaustive tool to be 
used within the identification problem. The dispersion 
function )(vyxθ  [Rajbman, 1981] may be considered 

as a modification and extension of the correlation 
ratio 
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Thus, the function inherits the mentioned disadvan-
tages of the correlation ratio.  

In turn, the maximal correlation coefficient is trans-
formed to the following function  

 =)(vSyx  (1) 
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The functional Syx(v) is referred as the maximal 
correlation function of the random processes y(t) and 
x(s). The notion of the maximal correlation as a 
measure of dependence was originally introduced and 
investigated for random variables in [Rényi, 1959a, 
1959b, Sarmanov, 1963a] and then extended to ran-
dom processes in [Sarmanov, 1963b]. 

Existence of the pair of transformations ( )CB,  in 
(1) is determined by conditions which are equivalent 
to those of used for random variables stated in [Rényi, 
1959a, Sarmanov, 1963b, Sarmanov and Zakharov, 
1960, Breiman and Friedman, 1985], with a basic 
assumption being the stochastic kernel of the random 

processes 
)()(

),,(
ypxp

vxyp
 meeting the following condi-

tion 
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for any v. Here p(x), p(y), p(y,x,v), stv −=  are the 
joint and marginal distribution densities of the input 
x(s) and output y(t) random processes correspond-
ingly. 

Due to (2), the density p(y,x,v) may be represented 
by the following bilinear eigenfunction expansion 
converging in mean [Sarmanov and Zakharov, 1960, 
Chesson, 1976] 
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Here 0)()( 2 ≥≥≥ KvSvS yx  are the eigenvalues 

of stochastic kernel in (2), with )(vS yx  being the 

largest eigenvalue, and the optimal transformations B 
and C from (1) being the eigenfunctions correspond-
ing to )(vS yx . 

In addition to the above examples, there exist cases 
when actual dependence between two variables is 
nonlinear even provided that the regression of a vari-
able onto another one is linear [Sarmanov and Brato-
eva, 1967]. For the example, the dependence can be 
properly handled only by the maximal correlation. In 
fact [Sarmanov and Bratoeva, 1967], let the joint dis-
tribution density of the input variable x and output 
variable y of a static model be given by the following 
relationship 
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Hermite polynomials. 
For the case, the correlation between y and x is lin-

ear, with the correlation coefficient 6
11 == yxKc , 

the regression functions are linear and have the form 
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time, )(1 xH  is not the first eigenfunction, and 

6
11 == yxKc  is not the first eigenvalue. For the 

example, 4
12 == yxSc  is the first eigenvalue, i.e. 

namely 2c  is the maximal correlation, with )(2 xH  
being the first eigenfunction. 

In accordance to [Sarmanov and Zakharov, 1960], 
determining the pair of optimal transformations 
( )CB,  meeting (1) is natural to refer as maximal 
arithmetization of the probability distribution given 
by the density p(y,x,v). 

The maximal correlation function is a complete 
measure of dependence of random processes and 
properly reflects actual nonlinear dependence be-
tween them, while, as demonstrated above, those of 
based on the dispersion and, moreover, ordinary 
product correlation functions do not. 

3 System identification based on the maximal 
correlation technique 

3.1 Deriving system model 
For the reasons stated in the previous section, the 

maximal correlation function approach will be used as 
a basic tool to derive an approximate system model 
under the assumption that no analytical model of the 
system is a priori available. Let us assume that for a 
system it had been made a preliminary expert selec-
tion of significant observable characteristics which 
will be considered as input and output variables in 
accordance to the input/output description of the sys-
tem, with the system’s variables being assumed to be 
discrete time stationary and joint stationary random 



processes. Also, it will not be a restriction to assume 
the random processes to have zero means. 

Then, for each output process )(tyi , yni ,,1K= , 

an approximate analytical model describing its de-
pendence on input processes )(sx j , xnj ,,1K=  is 

proposed to be searched in the following form 

 ( ) ( ))()()( )()()( vtxCvtyB j
jij

i
i −=κ , (3) 
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yni ,,1K= , xnj ,,1K= , mv ,,1K= , 

with ( )•)(iB , ( )•)( jC  being some nonlinear trans-

formations, )()( vijκ  being a scalar coefficient, and m 
being a preliminary specified integer reflecting the 
model memory. Corresponding structure scheme is 
presented in fig. 2, with 1−q  standing for the back-

ward shift operator, i.e. ]1[][1 −=− txtxq . 

In model (3), the transformations ( )•)(iB , ( )•)( jC , 

and the coefficient )()( vijκ  are to be determined by 
observing sampled values of )(tyi  and )(sx j  in 

accordance with minimization of the following identi-
fication criterion I 
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From criterion (4), it directly follows that the opti-
mal set ( ))(,, )()()( vijji kCB  for each nyi ,,1K= , 

nxj ,,1K= , mv ,,1K=  is to meet the conditions 
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Here )()( vS ij
yx  is the maximal correlation function 

of the input process )( vtx j −  and the output process 

)(tyi , corresponding to the optimal pair of transfor-

mations ( ))()( , ji CB . 
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Figure. 2. The identification scheme. 

Corresponding methods to estimate the transforma-
tions ( ))()( , ji CB  in relationship (5) by sampled data 

and then evaluate )()( vS ij
yx  were developed in [Sar-

manov, 1963a, Breiman and Friedman, 1985]. These 
use iterative techniques requiring, in turn, only esti-
mates of the corresponding regression functions. An-
other way is to obtain at first an estimate of the joint 
distribution density p(y,x,v) and then find the trans-
formations ( ))()( , ji CB  from (5) directly. 

Thus, procedure (5) combined with a technique of 
determining ( ))()( , ji CB  and )()( vS ij

yx  by sampled 

data leads to obtaining m matrices of nxny×  dimen-
sion, whose elements are the triples 
( ))(,, )()()( vijji kCB . 

3.2 Degree of nonlinearity 
In practice, a primary problem associated with non-

linear system identification is investigating the system 
to be actually nonlinear. Corresponding techniques 
are known as “tests on nonlinearity” [Rajbman, 1981, 
Billings and Voon, 1986]. These are based on various 
numerical characteristics quantitatively reflecting the 
system nature. In particular, such a general degree of 
nonlinearity has been proposed in [Rajbman, 1981]. It 
is based on the dispersion functions and has the form 



 )()(1)( 22 vvKv yxyxdisp θη −= , (6) 

with )(vK yx , )(vyxθ  standing for the product corre-

lation and cross-dispersion functions which are as 
defined above. A generalization of (6) is that of [Dur-
garyan and Pashchenko, 1985] based on the maximal 
correlation function  

)()(1)( 22
max vSvKv yxyxcorr −=η . 

Within the approach derived in Section 3.1, a natu-
ral way to define the degree of nonlinearity of such a 
system is as follows. Let 
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where )()( vK ij
yx  stands for the corresponding ordinary 

correlation. Then, let us define the degree of nonlin-
earity of model (3) as 

( ) ( )22
max 1 yxyxcorr SK−=η , 

with corrmaxη  vanishing if and only all the trans-

formations ( )x
j

y
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are linear ones. 
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in accordance to the above notations. 
The approach developed also enables one to intro-

duce another quantitative characteristic, the degree of 
nonlinearity in mean, defined as  

22
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⎛−= yxyxmean Sθη . 

Such a value reflects how the nonlinear system un-
der study differs from that of linear in mean. A sys-
tem is said to linear in mean [Rajbman, 1985], if it is 
linear with respect to conditional mathematical expec-
tation of the output process with respect to the input 
one. 

Consider as an illustrative example a single input 
/single output system having as the joint input/output 
distribution density that of presented in Section 2. 

Then, for such a system, 3
5

max =corrη . 

Also, as an additional example presenting signifi-
cance of use of the maximal correlation consider the 
same system. Let, however, the joint distribution den-
sity of the input and output variable of such a system 
to be of the form [Sarmanov, 1960] 
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with 1<λ . 
From the form it follows that both the input and 

output variables of the system have normal marginal 
distribution densities but theirs ordinary correlation is 
zero as well as the correlation ratio. At the same time, 
theirs maximal correlation is equal to 2λ . Conse-
quently, for such a system, dispη  is indefinable, 

while 1max == meancorr ηη . 
Thus, the technique proposed enables one: 

• to split the nonlinear system identification scheme 
onto simpler sequential stages, i.e. determining 
nonlinear transformations and linear coefficients; 

• to achieve completely formalized choice of non-
linear input and output transformations without 
any heuristics, and a priori assumptions on distri-
butions of the random processes, or the transfor-
mations to belong to a parameterized family; 

• to use a measure of dependence of random vector 
valued processes, which properly reflects the ac-
tual inherent stochastic linking between the proc-
esses; 

• to derive a nonlinearity measure of the system 
under study, with the measure being more accu-
rate in comparison with those of based on ordi-
nary product correlation functions, dispersion 
functions, or high order cumulants. 

4 Conclusions 
A non-parametric approach to input/output system 

identification has been presented under the assump-
tion that no analytical model of the system is a priori 
available. Within the approach, choosing the system 
input/output relationship is to be done by a “reliable” 
manner eliminating cases when some important in-
put/output links might be omitted. To meet the re-
quirement a consistent measure of stochastic depend-
ence of random processes has been proposed as a 
mathematical tool to obtain the system model. The 
measure is the maximal correlation function. Consis-



tency of the measure of dependence )(vS yx  of ran-

dom processes y(t) and x(t–v) means it to vanish, 
0)( =vS yx , if and only if the random variables 

)(tyY =  and )(txX =  are stochastically independ-
ent. In contrast, the ordinary product correlation func-
tion ( ))(),()( sxtyvK yx cov= , stv −=  of the ran-

dom processes y(t) and x(s) may vanish even provided 
that the random variables )(tyY =  and )(txX =  are 
completely dependent, i.e. if there exists a determinis-
tic function )(•f  such that )(XfY =  with prob-
ability 1. As to the maximal correlation as a measure 
of dependence, under the condition of complete de-
pendence of the random variables, it is equal to 1. 

The maximal correlation function properly reflects 
actual nonlinear dependence between random proc-
esses, while those of based on the dispersion func-
tions and, moreover, ordinary product correlation 
functions do not. In addition, there exist examples 
when actual dependence between two variables is 
nonlinear even provided that the regression of a vari-
able onto another one is linear. For such a case, the 
dependence can be properly handled by the maximal 
correlation ultimately. The reasons justify using the 
consistent measures of dependence. Within the sys-
tem identification methodology, the measure is shown 
to be a suitable tool to handle the system input/output 
relationship, with the body of data required within the 
technique not exceeding that of used for estimating 
the joint distribution density or regression functions 
of the random processes. 

As a final remark, one should be noted that of 
course the subject discussed within the paper has a 
variety of interesting and significant narrow aspects, 
so the present paper is by no means an exhaustive 
approach to such a kind of problems. Just as a sup-
plement, papers [Chernyshov 2002, 2003a, 2003b, 
2005, 2007] may be mentioned. 
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