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Abstract 
 The paper deals with analysis and continuous-
time adaptive control of a tubular chemical reactor 
with a countercurrent cooling as a non-linear single 
input – single output process. The output reactant 
temperature and the mean reactant temperature are 
chosen as the controlled outputs, and, the coolant 
flow rate as the control input. The parameters of its 
continuous-time external linear model are estimated 
via corresponding delta model The resulting 
controllers are derived using polynomial approach. 
The control system structure with two feedback 
controllers is considered. The approach is tested on 
a mathematical model of the tubular chemical 
reactor. 
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1  Introduction 
 Tubular chemical reactors are units frequently 
used in chemical and biochemical industry. From 
the system theory point of view, tubular chemical 
reactors belong to a class of nonlinear distributed 
parameter systems. Their mathematical models are 
described by sets of nonlinear partial differential 
equations (PDR). The methods of modelling and 
simulation of such processes are described eg.  in 
[Luyben, 1989; Ingham et al., 1994; Dostál et al., 
2008 and Severance, 2001]. 
  It is well known that the control of chemical 
reactors, and, tubular reactors especially, often 
represents very complex problem. At all events, a 
previous analysis of the process behaviour is 
obligatory. 
 One  possible  method to cope with this problem 

is application of adaptive strategies based on an 
appropriate choice of a continuous-time external 
linear model (CT ELM) with recursively estimated 
parameters (see, e.g. [Rao and Unbehauen, 2005]). 
These parameters are consequently used for parallel 
updating of controller‘s parameters.  
 The paper deals with analysis and continuous-
time adaptive control of a tubular chemical reactor 
with a countercurrent cooling as a non-linear single 
input – single output process. With respect to 
practical possibilities of a measurement and 
control, the output reactant temperature and the 
mean reactant temperatures are chosen as the 
controlled outputs, and, the coolant flow rate as the 
control input. The parameters of its CT ELM are 
estimated via corresponding delta model (see, e.g. 
[Middleton and Goodwin, 1990; Mukhopadhyay et 
al., 1992; Stericker and Sinha, 1993]. The resulting 
controllers are derived using polynomial approach 
[Kučera, 1993]. The control system structure with 
two feedback controllers [Dostál et al., 2007] is 
considered. The approach is tested on a 
mathematical model of the tubular chemical 
reactor. 
 
2  Model of the Plant 
 Consider an ideal plug-flow tubular chemical 
reactor with a simple exothermic consecutive 

reaction 
1 2k k

A B C→ →  in the liquid phase and with 
the countercurrent cooling. Heat losses and heat 
conduction along the metal walls of tubes are 
assumed to be negligible, but dynamics of the metal 
walls of tubes are significant. All densities, heat 
capacities, and heat transfer coefficients are 
assumed to be constant. Under above assumptions, 
the reactor model can be described by five PDRs  
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with initial and boundary conditions  
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Here, t is the time, z is the axial space variable, c 
are concentrations, T are temperatures, v are fluid 
velocities, d are diameters, ρ are densities, cp are 
specific heat capacities, U are heat transfer 
coefficients, n1 is the number of tubes and L is the 
length of tubes. The subscript (⋅)r stands for the 
reactant mixture, (⋅)w for the metal walls of tubes, 
(⋅)c for the coolant, and the superscript (⋅)s for  
steady-state values. 
 The reaction rates and heat of reactions are 
nonlinear functions expressed as 
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where k0 are pre-exponential factors, E are 
activation energies, ( - ΔHr) are in the negative 
considered reaction entalpies, and R is the gas 
constant. 
 The fluid velocities are calculated via the reactant 
and coolant flow rates as 
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 The parameter values with correspondent units 
used for simulations are in Tab. 1. 
 From the system engineering point of view, 

out( , )A Ac L t c= , out( , )B Bc L t c= , out( , )r rT L t T=  

and out(0, )c cT t T=  are the output variables, and, 

( )rq t ,  ( )cq t , 0 ( )Ac t , 0 ( )rT t  and  ( )c LT t   

are the input variables. Among them, for the 
control purposes, mostly  the coolant flow rate  

Tab. 1. Used Parameter Values 

L = 8 m n1 = 1200 
d1 = 0.02 m d2 = 0.024 m 

d3 = 1 m 
ρr = 985 kg/m3 cpr = 4.05 kJ/kg K 
ρw = 7800 kg/m3 cpw = 0.71 kJ/kg K 
ρc = 998 kg/m3 cpc = 4.18 kJ/kg K 
U1 = 2.8 kJ/m2s K U2 = 2.56 kJ/m2s K 
k10 = 5.61⋅1016 1/s k20 = 1.128⋅1018 1/s 
E1/R = 13477 K E2/R = 15290 K 
(-ΔHr1) = 5.8⋅104

kJ/kmol 
(-ΔHr2) = 1.8⋅104

kJ/kmol 
 

( )cq t  can be taken into account  as the control 
variable, whereas other inputs enter into the 
process as disturbances. As the controlled outputs 
are considered the reactant output temperature 

outrT  and the mean reactant temperature given by 
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L
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3  Computation Models 

 For computation of  both steady-state and 
dynamic characteristics, the finite diferences 
method is employed. The procedure is based on 
substitution of the space interval  0,z L∈< >  by a 

set of discrete node points { }iz for i = 1, … , n, 
and, subsequently, by approximation of derivatives 
with respect to the space variable in each node 
point by finite differences. The procedure is in 
detail described in [Dostál et al., 2008].  
 
4  Steady-state Characteristics 
 Steady-state characteristics were computed from 
discretized model with zero time derivatives using 
fixed point iterations algorithm.  
 The dependences of output concentrations and 
temperatures on the coolant flow rate in the steady-
state for 0 2.85s

Ac = , 0 0s
Bc = , 0 323s

rT = ,  

0 293s
cT =  and 0.15s

rq = are shown in Figs. 1, 2. 

The nonlinearity of all characteristics is evident. 
 
5  Dynamic Characteristics 
 The dynamic charakteristics were investigated for 
both supposed controlled outputs and selected step 
changes of the control input in the neighbourhood 
of  the  chosen  operating  point 30.27 m / ss

cq = ,  

326.10 Ks
r outT = and 334.44 Ks

mT = .  All variables 
were considered as deviations from their steady 



values   
( ) s

c c cq q t qΔ = − , out out out( ) ( ) s
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m m mT t T t TΔ = − . 

Simulated step responses are in Figs. 3 and 4. 
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Figure 1. Dependence of output concentrations on the coolant 

flow rate. 
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Figure 2. Dependence of reactant output and mean temperatures 

on  the coolant flow rate. 
 

0 50 100 150 200 250 300
-10

-8

-6

-4

-2

0

2

4

ΔT
r o

ut
 (K

)

t (s)

1 - Δqc = - 0.04 2 - Δqc = - 0.02
3 - Δqc = 0.02   4 - Δqc = 0.04

1
2

3

4

 
Figure 3. Reactant output temperature step responses. 
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Figure 4. Reactant mean temperature step responses. 

6  CT and Delta External Linear Model 

 For the control purposes, the controlled outputs 
and the control input are defined as 
 1 out out( ) ( ) s

r out r ry t T T t T= Δ = − , (10) 
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These expressions enable to obtain variables of 
approximately the same magnitude. 
 For both controlled outputs, the second order CT 
ELMs have been chosen in the form of the second 
order linear differential equation 
 1 0 0( ) ( ) ( ) ( )y t a y t a y t b u t+ + =  (11) 
or, in the transfer function representation as 

 0
2

1 0

( )( )
( )

bY sG s
U s s a s a

= =
+ +

. (12) 

 Establishing the δ operator 
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1q
T
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where q is the forward shift operator and T0 is the 
sampling period, the delta ELM corresponding to 
(20) takes the form 
 2

1 0 0( ) ( ) ( ) ( )y t a y t a y t b u t′ ′ ′ ′ ′ ′ ′δ + δ + =  (14) 
where t′ is the discrete time. When the sampling 
period is shortened, the delta operator approaches 
the derivative operator, and, the estimated 
parameters ,a b′ ′  reach the parameters a, b of the 
CT model as shown in [Stericker and Sinha, 1993]. 
 
7  Delta ELM Parameter Estimation 
 A procedure of the recursive CT ELM parameter 
estimation via a corresponding delta model can be 
briefly described in following steps: 
 Substituting 2t k′ = − , equation (14) may be 
rewriten to the form 
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 In the paper, the recursive identification method 
with exponential and directional forgetting 
according to [Bobál et al., 2005] was used. 
 Establishing the regression vector 

( )( 1) ( 2) ( 2) ( 2)T k y k y k u kδ − = −δ − − − −Φ (16) 
the vector of delta model parameters 
 ( )1 0 0( )T k a a bδ ′ ′ ′=Θ  (17) 
can be recursively estimated from the ARX model 
 2 ( 2) ( ) ( 1) ( )Ty k k k kδ δδ − = − + εΘ Φ  (18) 
 
8  Control System Design 
 The control system with two feedback controllers 
is considered as shown in Fig. 5. Here, w is the 



reference signal, v  denotes the load disturbance, e 
is the tracking error, u0 is the output of the 
controller, y is the controlled output and  u is the 
control input. 
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Figure 5.  Control system with two feedback controllers. 

 
 In general therms, G represents an ELM with the 
transfer function  
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and, Q and R are feedback controllers with transfer 
functions 
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where q  and p  are polynomials in s. Both w and 
v  are considered  to be step functions with 
transforms 
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 The controller design appears from the 
polynomial approach and the pole assignment 
method. The resulting controllers obtained by a 
solution of polynomial equations ensure the control 
system internal properness and stability as well as 
asymptotic tracking of step references and step load 
disturbance attenuation. 
 The procedure to obtain admissible controllers 
can be briefly described as follows: 
 Establishing the polynomial t as 
 )(~)()( sqsrst +=  (22) 
the control system stability is ensured when 
polynomials p~  and t are given by a solution of the 
polynomial Diophantine equation 
 )()()()(~)( sdstsbspsa =+  (23) 
with a stable polynomial d on the right side. 
Evidently, the roots of d determine poles of the 
closed-loop. 
 Taking into account the transform of the tracking 
error 

 [ ]1( ) ( ) ( ) ( )E s a p bq W s b pV s
d

= + −  (24) 

and both transforms (20), the asymptotic tracking 
and load disturbance attenuation are provided by 
polynomials p~ and q~  having the form 
 ( ) ( )p s s p s= ,  ( ) ( )q s s q s= . (25) 
Then, the transfer functions of controllers (20) take 
forms 
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A stable polynomial p(s) in denominators of (26) 
(excepting the integrating part) ensures the stability 
of controllers.  
 Now, the polynomial t can be rewritten into the 
form 
 )()()( sqssrst += . (27) 
 Taking into account solvability of (23) and 
condition of internal properness of the control 
system, the degrees of polynomials in (23) and (27) 
can be easily derived as 
 art degdegdeg == , 1degdeg −= aq ,  
 deg deg 1p a≥ − ,  deg 2 degd a≥ .  (28) 
 Denoting deg a = n, polynomials t, r and q have 
forms 
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where their coefficients fulfill equalities  
 00 tr = ,  iii tqr =+  for ni ,...,1=  (30) 
 Then, unknown coefficients ri and qi can be 
obtained by a choice of selectable coefficients 

1,0∈β i  such that 
 iii tr β= ,  iii tq )1( β−=  for ni ,...,1= . (31) 
 The coefficients βi split a weight between 
numerators of transfer functions Q and R.  
 The controller parameters then follow from 
solution of the polynomial equation (23) and 
depend upon coefficients of the polynomial d.  
 For the second order model (12) with 2deg =a , 
the controller's transfer functions take specific 
forms 
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where 
111 tr β= , 222 tr β= , 111 1 tq )( β−= ,  

 222 1 tq )( β−= . (33) 
 In this paper, the polynomial d with roots 
determining the closed-loop poles is chosen as 
 2( ) ( ) ( )d s n s s= + α  (34) 
where n is a stable polynomial obtained by spectral 
factorization 
 ( ) ( ) ( ) ( )a s a s n s n s∗ ∗=  (35) 
and α is the selectable double pole. 
 Note that a choice of d in the form (34) provides 
the control of a good quality for aperiodic 
controlled processes.  
 Now, it follows from the above introduced 
procedure that tuning of the controllers can be 
performed by a suitable choice of selectable 
parameters β and α. 
 



9  Simulation Results 
 The control simulations for the reactant output 
temperature are shown in Figs. 6 – 8. Simulations 
were performed in the neighbourhood of the 
operating point 30.27 m / ss

cq = , 326.10 Ks
r outT = . 

 For the start (the adaptation phase), a P controller 
with a small gain was used in all simulations.  
 The effect of the pole α on the control responses 
is transparent from Fig. 6 and 7. Here, two  values 
of α were selected. The control results show 
sensitivity of the controlled output and control 
input to α. Obviously, careless selection of this 
parameter can lead to oscillatory controlled output 
or even to unstability.  Further, a increasing α leads 
to higher values and changes of the control input. 
The effect of β2 on the controlled output is shown 
in Fig. 8. 
 The control simulations for the reactant mean 
temperature shown in Figs. 9 – 14 were performed 
in the neighbourhood of the operating point 

30.27 m / ss
cq = and 334.44 Ks

mT = under the same 
references and constraints on the control input as in 
the previous case. Present results again demonstrate 
an possibility to determine a form and speed of the 
controlled output as well as an amplitude of the 
control input and its changes. For instance, the 
control inputs in Figs. 12 and 14 show their high 
sensitivity to a choice of the parameters β. This fact 
may be very important in a practical control. 
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Figure 6. Controlled output y1 – dependence on α.(β1 = β2 = 1). 
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Figure 7. Control input – dependence on α (β1 = β2 = 1). 

 
Conclusions 

 In this paper, one approach to the continuous-time  
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Figure 8. Controlled output y1 – effect of β2 (β1= 1). 
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Figure 9. Controlled output y2 – dependence on α (β1 = β2 = 1). 
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Figure 10. Controlled output y2 – effect of β1 (β2= 0). 
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Figure 11. Controlled output y2 – effect of β2 (β1= 0). 

 
adaptive control of the output and mean reactant 
temperatures in a tubular chemical reactor  was 
proposed. The control strategy is based on a 
preliminary steady-state and dynamic analysis of 
the process behaviour and on the assumption of the 
temperature measurement at the output as well as 
along the reactor. The proposed algorithm employs 
an alternative continuous-time external linear 



model with parameters obtained through recursive 
parameter estimation of a corresponding delta 
model. The resulting continuous-time controllers 
are derived using the polynomial approach and 
given by a solution of a polynomial Diophantine  
equation. Tuning of their parameters is possible 
either via the parameter affecting the closed-loop 
poles or by a choice of selectable coefficients 
splitting a weight between numerators of 
controllers' transfer functions. The presented 
method has been tested by computer simulation on 
the nonlinear model of the tubular chemical reactor 
with a consecutive exothermic reaction. The results 
demonstrate the applicability of the presented 
control strategy.  
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Figure 12. Control input – effect of β2 (β1= 0). 
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Figure 13. Controlled output y2 – effect of β1, β2. 
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Figure 14. Control input – effect of β1, β2. 
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