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Abstract: The problem is considered of transmission object position estimates using band
limited communication channels. Due to advances in technology, it is feasible to have a tracking
filter attached to the sensor, and transmit only the condensed information as a tradeoff between
computation and communication requirements. This paper proposes a scheme, which minimizes
transmission data rate by sending adaptively encrypted innovations. It is assumed that the
second derivative of the object position is bounded above by the known constant, and the
sample rate is the design parameter. Adaptive tuning procedure for the coder range parameter
is proposed and numerically studied.
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1. INTRODUCTION

A fast growth of interest to the problem of estimation and
control under information constraints has been observed
within the control community during the last decade. A
number of research groups are studying limit possibilities
of control under such constraints (Nair and Evans, 2003;
Nair and Evans, 2004; Matveev and Savkin, 2004) and
others. The requirement of finite data rate demands the
use of coders (quantizers) in the control loop which makes
the system hybrid and makes its analysis more complex
(Liberzon, 2003). The known results are close to complete
for the equilibrium stabilization problem. However, they
leave open similar questions for many other important
problems. If the desired state vector of the system is time-
varying (e.g. for tracking problems) no tight bounds for
transmission rate ensuring convergence of the error to zero
are known.

In a number of engineering applications (e.g. in distributed
sensor networks, or remote surveillance systems), there is
no possibility to mount advanced measurement/estimation
devices on the transmitter (target) side (Liberzon, 2003;
Nair and Evans, 2003; Matveev and Savkin, 2004; La Scala
and Evans, 2005; Evans et al., 2005; Malyavej et al., 2006).
In these cases only measurements of some scalar output
variable of the transmitter system are available. Such
a problem was studied in (Fradkov et al., 2006), where
results on observer-based synchronization of chaotic sys-
tems, represented in the Lurie form are given, and optimal-
ity of the binary coding for coders with one-step memory is
established. In the present paper the results of (Fradkov et
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al., 2006) are applied to the problem of state estimation via
the limited-band communication channel for transmission
of position information. The system considered consists of
sensor node, which contains a tracking filter and encoder,
bandwidth limited communication channel, and receiver
node with a decoder. Some simplifying assumptions are
made in the paper. It is assumed that the sensor uses linear
Kalman filter for tracking, and that the receiver knows all
the sensor parameters. Further simplifications are achieved
by assuming that there are no clutter measurements, that
probability of detection equals one, and thus there are no
data association issues. The source (sensor) node performs
a simple Kalman filter based tracking. The channel is
assumed bandwidth limited, but otherwise noiseless. In
the present paper the results of (Mušicki et al., 2006) are
expanded to adaptive coding.

2. CODING PROCEDURES

The following time-varying coder with memory is used in
the present work for observations transmission over the
communication channel. This procedure is based on the
results of (Nair and Evans, 2003; Brockett and Liberzon,
2000; Liberzon, 2003; Fradkov et al., 2006).

2.1 Primitive coder

Let y be an observation signal to be transmitted over the
channel. A uniform scaled coder function qν,M (y) is defined
as

qν,M (y) =
{

δ · 〈δ−1y〉, if |y| ≤ M,

M sign(y), otherwise,
(1)

where 〈·〉 denotes round-up to the nearest integer function,
sign(·) is the signum function; M is the coder range
parameter; δ = 21−νM is length of the discretization



interval. The range interval I of length 2M is defined
as I = [−M, M ]. Evidently, |y − qν,M (y)| ≤ δ/2 for all
y such that y : |y| ≤ M + δ/2 and all values of qν,M (y)
belong to the range interval I. Notice that the interval I is
equally split into 2ν parts. Therefore, the cardinality of the
mapping qν,M image is equal to 2ν +1, and each codeword
symbol contains R = log2(2ν +1) = log2(2M/δ+1) bits of
information. Thus, the discretized output of the considered
coder is found as ȳ = qν,M (y). Measurements of the plant
output and codeword transmission of the over the channel
are produced with the given constant sampling period Ts.
It is assumed that the coder and decoder make decisions
based on the same information.

2.2 Time-varying coder with memory

The zooming strategy with a time-varying quantizer (with
different values of M for each instant, M = Mk) is
applied. Zooming is effective for coders with memory
(Liberzon, 2003). To describe this kind of coders, introduce
the sequence of central numbers ck, k = 0, 1, 2,. . . with
the initial condition c0 = 0. At the step k, the coder
compares the current measured output yk with the number
ck, forming the deviation signal ∂yk =yk− vck. Then this
signal is discretized with a given ν and M =Mk according
to (1). The output signal

∂̄yk = qν,Mk
(∂yk) (2)

is transmitted over the communication channel to the
receiver. Then the central number ck+1 and the range
parameter Mk are renewed based on the available infor-
mation about the driving system dynamics. The following
update algorithm is used in one-step memory coders:

ck+1 = ck + ∂̄yk, c0 = 0, k = 0, 1, . . . . (3)

Optimization of coders w.r.t. the bit-per-second rate R̄ =
R/Ts is considered in (Fradkov et al., 2006). It is shown
that the binary coding scheme gives the optimal transmis-
sion rate R̄ = 1/Ts baud, which yields M = Δ/2 as an
optimal value for M , where Δ = sup

t
|δy(t)| is the upper

bound of the transmission error. Therefore, the signum
function is an optimal one for coder, and (1) turns to

q0,Mk
(y) = Mk sign y. (4)

It gives the coder output as ∂̄yk =Mk sign(∂yk).

At the initial stage of the system evolution the error
|δy| may exceed the bound Δ, because the initial value
y(0) is not known. This initiated the transient mode of
the system behavior. The zooming strategy is efficient at
this stage. The values of Mk may be precomputed (the
time-based zooming), or, alternatively, current quantized
measurements may be used at each step to update Mk

(the event-based zooming).

2.3 Adaptive coder

To start, consider the following simple time-based zooming
procedure of (Fradkov et al., 2006):

Mk =(M0−Mmin)ρk+Mmin, k=0, 1, . . . , (5)
where 0<ρ≤1 is the decay parameter, Mmin stands for the
limit (minimal) value of Mk. The initial value M0 should
be large enough to capture all the region of possible initial
values of y0.

If parameter Mmin is mistakenly chosen too small, the
data transmission process by means of the described
procedure may failed due to the coder saturation. In
the present work, the time-based zooming procedure with
the event-based correction is proposed: if the coder is
not saturated, the quantizer range M is exponentially
decreased; if the coder saturation appears, the quantizer
range M is increased. Such an adaptive coding makes it
possible to maintain the minimal discretization interval δ
and, therefore, minimize transmission errors. At the same
time, this prevents fail in tracking the signal yk due to the
saturation.

The proposed method for tuning the quantizer range M is
described by the following recurrent algorithm:

λk = (∂̄yk + ∂̄yk−1)/2,

Mk = m +
{

ρMk−1, if |λk| ≤ 0.5
Mk−1/�, otherwise,

(6)

where 0 < � ≤ 1 is the decay parameter; m=(1− ρ)Mmin,
Mmin assigns the minimal possible value for Mk. The
initial value M0 should be large enough in comparison
with possible y0. The procedure (6) leads to time-based
decreasing of Mk while signs of the successive values of ∂̄yk

alternate. The sort of discrete-time sliding-mode tracking
the plant output appears in that case, and Mk recursively
tends to the limiting value Mmin. When the moving
average of the transmission error exceeds the threshold,
the second alternative of algorithm (6) is realized, and the
quantizer range Mk increases.

The equations (1), (2), (6) describe the coder algorithm.
The same algorithm is realized by the decoder. Namely, the
decoder calculates the variables c̃k, M̃k based on received
codeword flow similarly to ck, Mk.

2.4 Time-varying coder of full order

The sequence of the central numbers {ck} defined by (3) is
produced by one-step memory coder, corresponding zero-
order extrapolation of the measured plant output. This
coder ensures asymptotically exact transmission of the
sensor observations if the plant model is an unperturbed
integrator, no sensor errors present and the channel is ideal
(Wong and Brockett, 1997; Nair and Evans, 1997; Matveev
and Savkin, 2004; Malyavej and Savkin, 2005). Let us turn
to the full-order coder, which may be used for asymp-
totically exact transmission of the sensor observations for
more common class of plant models. Namely, consider the
following LTI discrete-time plant model

xk+1 =Axk+Buk+Eϕk, yk =Cxk, (7)
where xk ∈ R

n is the plant state vector, uk ∈ R
m is

the external input signal, applied to the plant, yk ∈ R

is the scalar plant output, measured by the sensor, k =
0, 1, . . . . The matrices A, B, C, E and the signal uk

are assumed to be known both at the transmitter and
the receiver nodes, the sensor output yk is subjected
to coding/decoding procedure to be transmitted over
the communication channel with limited capacity. The
external disturbance vector ϕk∈ R

s is an irregular process,
unmeasured by the sensor. The pair (A, C) is assumed to
be observable. As above, we neglect the sensor or channel
errors and the plant model (7) imperfection.



Consider the following full-order (Kalman) observer for the
plant (7)

x̂k+1 =Ax̂k+Buk + Lk∂̄yk, ŷk =Cx̂k, (8)
where the error signal ∂̄yk is defined by (2), where ∂yk =
yk − ŷk, Lk ∈ R

n×1 is the observer matrix gain (column
vector), k = 0, 1,. . . . It should be noticed that the coding
procedure (2), (3) may be considered as a particular case
of the observer-based coding procedure (8), where A =
B =L=0, n=1. Also notice that for the considered data
transmission scheme, the observer output ŷk plays a role
of the central number ck. Matrix Lk is to be found at
the stage of the observer design. The least-square optimal
solution for Lk may be found as precomputed Kalman
gain sequence. In the present work, the constant matrix
Lk ≡ L is taken, and the pole-placement technique is used
to find the matrix gain L. To calculate the range parameter
Mk, the time-based zooming procedure (5) or adaptive
algorithm (6) may be applied. The observation algorithm
(8), (6) is reproduced at the receiver node based on the
values of ∂̄yk, transmitted over the channel.

Let us study accuracy of the observer (8). To this end,
write down the state error equation for the plant model (7)
and observer (8). Subtracting (8) from (7), one obtains:

ek+1 =(A−LkC)ek+Buk+Lkζk−Eϕk,

∂yk =Cek, (9)
where ek = xk − x̂k is the observer state error. To examine
the state error behavior, let us assume that the deviation
signal ∂yk =yk−ŷk is bounded, |∂yk| ≤ Mk + δk/2 for all
k = 0, 1, 2,. . . , where δk = 21−νMk (see Sec. 2.1). Under
this assumption we may represent the signal ∂̄yk in (8) as
∂̄yk =∂yk+ζk = yk− ŷk+ζk= yk−Cx̂k+ζk, where ζk is the
bounded “coding error”,

|ζk| ≤ δk/2=Mk/2ν . (10)
Particularly, for the binary coder (4) it is valid that
|ζk| ≤ Mk. Inequality (10) makes it possible to find the
upper bound of the state estimation error max

k
|ek| and,

consequently, to find the upper bound of the output trans-
mission error max

k
|∂yk|, applying the H∞-norm technique.

Under the assumption that ‖ϕk‖≤ ϕ̄, we may use the same
approach for evaluation the upper bound of the errors
effected by the external disturbance ϕk.

It should be noticed that the adaptive quantizer with a
memoryless (static) coder was considered in (Goodman
and Gersho, 1974). A more general nth order observer-
based coding procedure was proposed in (Andrievsky et
al., 2007), where application to pitch motion control of
the Helicopter laboratory set-up was presented. Note also
that the adaptive coding for a special case of first-order
system is analyzed in (Gomez-Estern et al., 2007).

3. REMOTE SURVEILLANCE SYSTEM WITH
BIT-RATE CONSTRAINED COMMUNICATION

CHANNEL

3.1 Problem of target position transmission with data-rate
limitations

Based on the papers (Sciacca and Evans, 2002; La Scala
and Evans, 2005; Evans et al., 2005; Malyavej et al., 2006;
Mušicki et al., 2006), consider the remote surveillance

system having several sensors connected to a multiplexer,
which in turn is connected via a limited and/or time-
varying data rate communication channel to a fusion cen-
tre, where target tracking based on observations provided
by the sensors are performed (Sciacca and Evans, 2002;
Evans et al., 2005). In the case of limited channel data rate,
the problem arises of transmission the position information
from all sensors without loss to the fusion centre. To
simplify the exposition, we assume at the sequel that the
channel capacity is divided between the different sensors,
and consider a single sensor supplying information within
the data rate limit. 1 More definitely, we consider the
object tracking problem, assuming that the observation
signal y(t) (the object coordinates in the given reference
frame) is coded with symbols from a finite alphabet at
discrete time instants tk = kTs, where Ts is the sampling
period, k = 0, 1, . . . . Coded symbol is transmitted over
a digital communication channel with a finite capacity.
Observation noise, transmissions delay, and transmission
channel distortions are neglected. Assume, that coded
symbols are available at the receiver side at the same
sampling instant tk, as they are generated by the coder.

The problem is to find coder/decoder pair algorithm,
minimizing the data flow over the channel without loss
of the target position information.

3.2 Target Model

Consider the case of tracking a target moving with near
constant ground speed V in one dimension of the horizon-
tal plane with measurements of position by means of the
remote sensor with the sampling period Ts. Target position
should be transmitted over the communication channel to
the fusion centre. The sensor errors, communication time
delay and channel drop outs are neglected. The target
lateral acceleration a(t) is assumed to be bounded irregular
process, |a(t)| ≤ ā for all t. No additional information
concerning the target acceleration is available. A state-
space model for such a scenario is given by (7), where
B=0, uk ≡ 0, ϕ̄ = ā,

A=
[
1 Ts

0 1

]
, C =[1, 0], E=Ts

[
Ts/2

1

]
. (11)

3.3 Coder design

The coder (2), (5) (or (6)), (8) design parameters are:
digit capacity ν; sampling period Ts; range parameters M0,
Mmin, ρ; observer matrix gain Lk. At the sequel the binary
coder (4) and the constant matrix Lk ≡ L are taken.

The matrix L was found at the steady-state mode (Mk ≡
M) as a solution to the following constrained optimization
problem:

(1) the eigenvalues z1,2 of the matrix AL =A−LC should
be bounded, |z1,2| ≤ exp(−ηTs), where η > 0 is the
given stability margin setting the lower bound of the
observer convergence rate;

(2) total output transmission error Qy = max
k

|∂yk|,
caused by the bounded coding error ζk, |ζk|≤M , and

1 A problem of switching the channel between the sensors (a sensor
selection problem) is studied thoughtfully in (Evans et al., 2005).



bounded external disturbance ϕk, |ϕk| ≤ ā, should be
minimized;

(3) condition Qy ≤ M should be fulfilled.

To find the upper bound Qy of the output transmission
error (see cond. 2), the H∞-norm of the systems S1 =
{AL, L, C} and S1 = {AL, E, C} were calculated. Fulfill-
ment of the condition 3 was checked after optimization
and only feasible solutions were selected.

3.4 Numerical example

Let ā = 10 m/s2, η = −1 (see cond. 1). Consider the
steady-state mode, Mk ≡ M , and pick up the pairs (Ts,
M) ∈ [0.1, 0.2, . . ., 1.0]×[0.5, 2,5, 10, 20]. Resulted output
transmission error Qy as a function of the sampling period
Ts for different M is depicted in Fig. 1. It is seen that the
problem is infeasible for M =0.5 m if the sampling period
exceeds 0.1 s. This means that the data transmission rate
R = 1/Ts should not be less than 10 baud to ensure the
upper bound of position transmission error Qy = 1 m. If
Ts =1 s (R=1 baud), M =17 m may be taken, which gives
the guaranteed upper bound Qy ≈34 m. The surface plot
for tracking error versus R and M is shown in Fig. 2.

Fig. 1. Tracking error vs sampling period for different
values of the range parameter M .

Fig. 2. Tracking error vs sampling rate R and range
parameter M .

For simulation, consider the following target motion sce-
narios. Let the target moves at the horizontal plane, its

position data are described in some Earth reference frame
(Og, Xg, Yg). Target groundspeed is V = 270 m/s. The
sensor is located at the origin Og. The first scenario
assumes that the target has the constant course angle
Ψ=−2.5 rad. According to the second scenario, the target
turns to Ψ = −3.45 rad starting from the point of time
tturn = 60 s. Course angular velocity Ψ̇(t) is bounded,
|Ψ̇| ≤ 0.037 rad/s, which limits the target lateral accel-
eration at: |at|≤10 m/s2.

Two identical channels of target tracking, along OgXg and
OgYg axes is considered. The sampling period is taken as
Ts = 1 s.

Examination of data transmission with time-based zoom-
ing. Examine the data transmission system with time-
based zooming (5). Pick up ρ=0.9, M0 =25 · 103. Let no a
priory information on the target position and course angle
is available, therefore at t=0 the estimates x̂t, V̂tx , ŷt, V̂ty

are zeroized.

Applying for Ts = 1 s, ā = 10 m/s2 procedure of Sec. 3.3
we obtain: Mmin = 20 (see Fig. 1), L = [1.26, 0.40]T,
z1,2 =0.368±0.0046i, |z1,2|=0.368. The simulation results
for the first scenario are depicted in Figs. 3–5. To feel
the estimation error, a distance between the actual and
estimated target positions D=

√
(xt−x̂t)2 + (yt−ŷt)2 (in

meters) is calculated and its logarithmic measure vs t is
plotted in Fig. 5 (curve 1).

Fig. 3. Target tracking. OgXg axis projection. Time-based
zooming (5), straight-line motion.

The simulation results for the first scenario are depicted in
Figs. 6–8. It is seen that in the course of the turn the error
D(t) increases up to 124 m, and then falls to lim

t→∞D(t)=D̄,

D̄ ≈ 30 m. Logarithmically scaled time history of D(t)
is plotted in Fig. 5 (curve 2). Time-sequences of binary
symbols, transmitted over the each channel are plotted in
Fig. 8. Total quantity of information, transmitted during
the considered time interval is 240 bit.

Examination of data transmission with adaptive zooming.
Examine now the target position transfer algorithm with
the adaptive coder (6). Take Mmin = 0.5, ρ = 0.5; the
other parameters remain the same as in Sec. 3.4.1.



Fig. 4. Target tracking. OgYg axis projection. Time-based
zooming (5), straight-line motion.

Fig. 5. Distance error (logarithmic scale). Time-based
zooming (5). 1 – straight-line motion, 2 – motion with
turn.

Fig. 6. Target tracking. OgXg axis projection. Time-based
zooming (5), motion with turn.

The simulations show that the upper bound of the steady-
state error lim

t→∞D(t) ≈ 0.4 m, the 5%-zone transient

time t0.05 is t0.05 = 20 s (i.e. 20 samples), the 1%-zone
transient time t0.01 = 33 s (33 samples). These results
are significantly better that those for coder with time-
based zooming (5). Some simulation results are plotted
in Figs. 9–13.

4. CONCLUSIONS

In the paper a communication scheme minimizing trans-
mission data rate over bandwidth limited noiseless com-
munication channel by sending encrypted innovations is

Fig. 7. Target tracking. OgYg axis projection. Time-based
zooming (5), motion with turn.

Fig. 8. Sequences of transmitted symbols. Time-based
zooming (5), motion with turn.

Fig. 9. Target tracking. OgXg axis projection. Adaptive
zooming (6), straight-line motion.

proposed. The observer-based full-order adaptive coding
procedure of (Andrievsky et al., 2007) is applied for tar-
get position transmission with data-rate limitations. The
simulation results demonstrate efficiency of the proposed
method.
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