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Abstract 

A technique of chaos suppression in chaotic dynamical 
systems presented in this paper is based on the idea of 
multiparametrical correction of the system’s parameters. 
The aim of correction is the chaotic system stabilization 
so that with the natural demand of minimal dynamic 
change of its parameters the modification of system’s 
chaotic attractor into the stable limit set will be provided. 
The words “minimal changing” mean that the feature of 
proposed technique lies in providing the achievement of 
an optimum regime by the system. This regime can be 
obtained with Pontryagin maximum principle under spe-
cial kind of dynamic changing of parameters. The optimal 
corrective function can be found for each parameter. The 
value of these functions is the possibility to localize the 
unique limit set in the phase space of the system and to 
investigate the peculiarities of the optimal transient proc-
ess which provides the modification of chaotic attractor 
into this set. The results of numerical experiments with 
the family of nonlinear oscillators have confirmed the 
quality of chaos suppression and efficiency of the offered 
technique. 
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1   Introduction 

An important feature of chaotic systems is the high sen-
sitivity to the small parametric perturbations. It is espe-
cially significant when one needs to control complex 
dynamics. The practical application of well-known chaos 
control techniques [Fradkov, Evans and Andrievsky, 
2006] arises the investigators’ interest to the field of 
chaos control and to the upgrading the ways of investiga-
tion evolving in it. 

Recent inclusion of the chaotic systems into the class of 
controllable objects defined the new concept of system 
perturbation aims [Shinbrot, Grebogi, Ott and Yorke, 
1993]. It lies in the choice of control modifying the sys- 
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tem limit set (LS) from unstable into the stable one. For 
modified LS one can take an unstable system state, unsta-
ble cycle or a chaotic attractor of the system. Though 
unlike the traditional stabilization task the quantitative 
characteristics of the target set are not given beforehand. 
Instead of it only the desirable type of the limit set (which 
must be stable) is postulated. 

The developed field of investigation aimed at the quali-
tative changes in chaotic dynamical systems under certain 
external periodic parametric perturbations (that is at the 
chaotic attractor modification) may be called the studies 
of the problems related to suppression of chaos and non-
feedback controlling of chaotic motion (generalize ana-
lytic studies of the problems see [Loskutov, 2006]). Note 
that the basis of the analytical apparatus which allows to 
estimate the efficiency of the parametric perturbation is 
constituted by Melnikov criterion. As a rule only one pa-
rameter is perturbated. 

The presented paper is closely connected with the stud-
ies mentioned. But we focus our attention on the investi-
gation of the technique which provides the achievement 
of the optimal regime by the system during the chaos sup-
pression process. Thus we assume that the most complete 
understanding of the chaotic dynamics disappearance is 
possible only in multiparametrical analysis. 

In this context, notice several established fields of in-
vestigation which exploit the idea of multiparametrical 
approach to the non-linear phenomena investigation. Im-
portant results widely applicable to the problems of me-
chanics were obtained through the development of the 
techniques of the classical theory of stability (multi-
parametrical theory of stability [Seyranian, Mailybaev, 
2003]). We study linearized equations depending on sev-
eral parameters. The application of analytical apparatus of 
multiparametrical bifurcation analysis of eigenvalues to 
the oscillator systems allows studying the space of pa-
rameters, defining the features of the stability (instability) 
areas boundaries and discovering new mechanic effects. 
Thus a productive approach in dynamics, a multiparamet-
rical investigation of chaos transitions [Kuznetsov, Tu-
rukina, Savin, 2002], is based on the application of the 



ideas of the renormalization group (RG) analysis. The 
analysis of solutions of RG equations makes it possible to 
study various extreme situations which take place in mul-
tiparametrical analysis of chaos appearance in dynamic 
systems (universal characteristics, self-similarity laws, 
peculiarities of parameters’ space organization at the edge 
of chaos [Kuznetsov, Kuznetsov and Sataev, 2005]). 

In this work the object of multiparametrical optimal 
correction is nonlinear generalization of the classical self- 
oscillatory system – periodically forced Duffing-van der 
Pol (DvdP) oscillator: 

)cos()1( 32 tfxxxxx ωβαµ =++−− &&& , 0>µ . (1) 
A large number of physical and engineering problems 
[Lakshmanan, Murali, 1996] are reduced to the investiga-
tion of the equation (1). A particular representative of the 
family of DvdP oscillators is defined by the restrictions of 
parameter values α  and β  of the unperturbed potential: 

4/2/)( 42 xxxU βα += . According to the condition 
0/)( =dxxdU  DvdP oscillator has three equilibria: 

)0,0()1( =ex  and )0,/()3,2( βα−±=ex . We shall study 
two most outstanding and interesting physical situations: 
(i) single-well potential ( 0>α , 0>β ) and (ii) double-
well potential ( 0<α , 0>β ). 

In case (i) parameters causing chaotic behavior will be 
chosen for 0>>> βα  that is for a very small value β . 
This particular situation is thoroughly studied in [Sanjuán, 
1996]. It is shown that two routes to chaos: period-
doubling and the intermittency associated with the saddle-
node bifurcations are peculiar to the system. The charac-
teristic feature of the case lies in the fact that the coordi-
nates of the points ex )3,2(  are imaginary. The typical cha-
otic state with the parameter values 1=α , 00025.0=β , 

5== fµ , 4665.2=ω  investigated in the work is 
shown in Fig.1,(a) where phase variables of the first-order 
system  
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are plotted on the axes. It is equivalent to the equation (1) 
and useful from both a theoretical and a numerical point 
of view. 

 
 

Figure 1. Chaotic regimes of a family of Duffing-van der Pol 
oscillators: (a) – single-well potential; 

(b) – double-well potential. 
 

The case (ii) will be studied for βα >|| , when chaotic 
attractor includes two types of unstable orbits, closed and 
separated by a separatrix when unforced. Fig. 1,(b) illus-
trates the systems chaotic state under investigation at 

44.1−=α , 1== µβ , 45.0=f , 2.1=ω . As you can 
see, the first type of motions surrounds all the three equi-
librium states (large orbit (LO)). The second type (small 
orbit (SO)) occurs in the vicinity of one of the points 

ex )3,2(  and substantially depends on initial conditions. 
Both models demonstrate a wide range of dynamic re-

gimes including chaos and are of much interest for the 
studies of nonlinear phenomena and chaotic dynamics 
control [Li, Ji, Hansen and Tan, 2006]. 

 
2   General Problem Statement 

Let ),( pxfx =& , nRx∈  be a continuous-time dissipa-
tive chaotic system with the vector of real parameters 

),...,,( 21 mpppp =  accessible for certain external 
perturbations. We assume that initial values of the 
parameters lie in the area of chaotic behavior of the 
trajectories. The trajectories are globally restricted 
( Dtx <||)(|| ) and for all the initial conditions 

ABxx ∈= 0)0(  the chaotic attractor pA  is the limit set of 

the system ( n
pA RAB ⊆)(  is the basin of attractor pA ). 

The structure of the attractor is determined by the set 

}0),(|{}{ ,1)( =⊂== = pxfRxxE n
sk

e
k . 

Here s  – the number of unstable equilibrium states in the 
system’s phase space with respect to which the unstable 
cycles embedded into the attractor are localized. 

In the general case the idea of space correction of the 
chaotic dynamic system parameters lies in the initial sys-
tem transformation to the form 

),( *pxfx =& ,  (2) 
where the accessible parameters are corrected according 
to the rule ))(1()(* thptp jjj += , mj ,1= . 

The aim of correction is the stabilization of the system 
(2) so that with regard to the natural small demand 

min|||| * →− pp the modification of pA  into the stable 
limit set M  could be provided. 

Despite the sufficient lack of the information on the tar-
get set M , we can distinguish two possible results of 
correction: 

1) In the simplest case one of the equilibrium states of 
the system Exe ∈*  will become the stable limit set. 

2) Due to the greater variability the stabilization of the 
cycle )(* txτ , where τ  – period of the cycle, is much 
more interesting. It would appear natural that the lo-
calization and characteristics of the periodic solution 

)(* txτ  depend on the structure and stability character 
of the equilibrium set E . 

We define the set }0),(|),{( * == pxfhxM E  so that 
at 0≡h  it will coincide with E . Let 



||||inf),( xzxM
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ρ  be the minimal Euclidian dis-

tance between the set M  and the point nRx∈ . 
Then the aim of correction for the both cases mentioned 

is the provision of the internal stability of the target set 
},|||||{),( *** E

eene MxrxxRxrxM ∈≤−∈= , 
where r  – is the radius of the sphere (determined by the 
system characteristics, that is by Dtx <||)(|| ) containing 
the unique limit set (ULS). It means that for all ABx ∈0  
at +∞→t  together with (global) attracted condition 

0))(),,(( * →txrxM eρ  
for the solution )(txx =  the conditions of asymptotical 
orbital (local) stability are also performed in relation to 
the state ),( ** rxMMx e

E
e ⊂∈ . Observe that at 0≡h  the 

target set is unstable. 
Hence if the internal stability conditions are performed 

the set ),( * rxM e  is invariant and includes either a closed 

trajectory – stable cycle )(* txτ  ( constrr == 0 , 

Dr << 00 ), or a stable equilibrium set ex*  ( 0→r  at 
+∞→t ). 

High sensitivity of chaotic systems to small parametric 
changes calls for taking into account the possibility of 
variations of corrective influence intensity which provides 
the necessary modification of the system attractor. In this 
context consider the case of restriction to a corrective 
influence of the form 

ah ≤⋅ ||)(|| , 10 <<< a .  (3) 
As the corrective influence has a dynamic character, 

let’s make the localization and stabilization of the system 
unique state suit the requirement 

Uh

T

dtth
∈

→∫ min||)(||
2
1

0

2 ,  (4) 

where 
{ }*],,0[,||)(|||],0[)( TTTtathTChU >>∈≤∈⋅= , 

],0[ TC  is a class of continuous bounded functions, de-
fined at the time interval ],0[ T , T  is the final but not 
fixed moment of time, definable from the transient proc-
ess duration *T  of the achievement of ),( * rxM e . 

Note that the choice of the function )(th , ],0[ Tt ∈ , is 
simultaneously constrained by both the restriction (3) and 
the demand (4). The first considers obeying the demand 
of small perturbation on system parameters and presup-
poses the choice of the minimal quantity mina . The sec-
ond shows a natural want to carry out the dynamic modi-
fication of chaotic attractor with minimal energy costs. 
Simultaneous compliance with the conditions will allow 
to identify the unique limit set embedded to ),( * rxM e . 

To sum up we formulate the task of multiparametrical 
optimal correction the following way: through the choice 
of value of the restriction mina , it is necessary to find 
such an admissible process ))(),(( thtx , ],0[ Tt ∈ , which 
for all ABx ∈0 , 00 ≠x , meeting the condition (4) pro-

vides the internal stability of the set ),( * rxM e . Note that 
the solution of the task means the realization of the opti-

mal modification of chaotic attractor PA  into the stable 
ULS.  

It is well-known that by virtue of necessity of provision 
the system’s asymptotic stability the traditional optimal 
stabilization task is formulated at the infinite half-interval 
of time ),0[ +∞ . The achievement of asymptotic state is 
required at multiparametrical correction as well. Besides, 
the consideration of the dynamic character of correction 
draws attention not only to the established regime and its 
characteristics, but also to the transient process during 
which the system demonstrates the behavior different 
from the one typical at +∞→t . In numerical simulation 
in time evolution of nonlinear dynamic systems it is al-
ways possible to identify the regions corresponding to the 
transient process and to the established regime as well as 
to define the transient process duration with the prear-
ranged accuracy δ  [Koronovskii, Starodubov and 
Hramov, 2002]. 

Hence in choosing a moment of time from the condition 
*
δTT >>  where *

δT  is the transient process duration of the 

system meeting the target set ),( * rxM e  specified with the 
accuracy δ  the general task defined at the infinite half-
interval of time ),0[ +∞ , can be reduced to the similar task 
re-defined at the interval ],0[ T . Then with the given 
number δ  for the numerical estimation of transient proc-
ess duration *

δT  the confirmation for all the *
δTt >  of the 

condition: δ<− ||)()(|| * txtx , where ),( ** εexMx ∈  is 
system attractor, is necessary. 

Taking into account the dependence of *
δT  on the initial 

condition and restriction ath ≤||)(|| , the transient process 
duration can be found from: 

)},(,||)(),(|||),(max{ 0
*

*00
** axTttxxtxaxTT δδ δ >∀<−= . 

With the estimation of *T  being done, the choice of the 
time interval length ],0[ T , *TT >> , at which the prob-
lem solution is being investigated becomes possible. 
 
3   The Offered Solution 

The solution of the problem formulated in the work lies 
in the combination of optimal control theory techniques 
with numerical tests of chaos suppression quality. 

The condition of the maximum principle [Pontryagin, 
Boltyanski, Gamkrelidze, 1962] forms the basis of the 
analytical apparatus that permits to obtain locally optimal 
corrective functions. 

Let’s introduce the Hamilton-Pontryagin function 
2* ||||

2
1),(),,( hpxfhxH T −=ψψ  

for the system (2). To make the vector-function 
Uth ∈∗ )(  and the trajectory )(tx∗  corresponding to it 

with bounded conditions ABx ∈*
0 , ),()( * rxMTx e∈∗  op-

timal with respect to (4), there should exist such a non-
zero vector function nRt ∈)(ψ , satisfying the system 

)(),(),(()( ** tthtxHt x ψψ −=& , 

in which the function ))(),(()( ttxhth ψ∗∗ =  satisfies the 
condition of maximum 



0))(,),((max))(),(),(( ≡= ∗

∈

∗∗ thtxHtthtxH
Uh

ψψ . (5) 

At the same time in the points *
0x  and )(Tx∗  the condi-

tions of transversality )( *
00 xΩ⊥ψ  and ))(()( * TxT Ω⊥ψ , 

where )( *
0xΩ  and ))(( Tx∗Ω  are the tangent manifolds to 

the sets AB  and ),( * rxM e  in the points ABx ∈*
0  and 

),()( * rxMTx e∈∗  correspondingly should be performed. 
The condition (5) plays a special role in our task. 
The solution of the maximization task 

Uu
tutxH

∈
→ max))(,),(( ψ  using the equation 

0))(,),(( * =thtxH h ψ  and the restriction Uh∈  gives the 
desired corrective function 
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where ))(),(()()(
~ * tptxftth h

Tψ= . As a result we have 
the system 
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Its integration with regard to (6) gives the desired optimal 
pair )(* tx , ))(),(()( ** ttxhth ψ= , ],0[ Tt ∈ . 

To make the solution optimal we should satisfy the con-
ditions of transversality at both ends of the trajectory. It is 
easy to perform the condition )()0( 00 xΩ⊥ψ  at the left 

end using the equation 0
1

00 =∑
=

n

i
ii xψ . The condition at 

the right end is performed automatically as it is shown 
below. 

The role of the condition (5) is not reduced to finding 
(6) only. An important feature of the system (7) is that it 
can not be stable at the variables x  and ψ  simultane-
ously. The trajectories of chaotic systems are restricted 
with the area Dtx <||)(|| , which can be a sphere such that 
the trajectories which lie or appear in it remain there at 

+∞→t . Global restriction of chaotic systems trajectories 
in this case is referred to as a kind of stability. It is of 
value that this particular restriction is preserved at small 
perturbation of systems parameters. Then the introduction 
of the conjugate system according to the maximum prin-
ciple leaves the condition Dtx <||)(||  in force and causes 
the unlimited increase of the norm ||)(|| tψ  at ],0[ T . 

Having substituted ))(),(),(( ** tthtx ψ  into the function 
H  we get an equation 

.0||)(||
2
1

)))((),(()())(),(),((

2*

*****

=−

−=

th

thptxfttthtxH Tψψ
 

Hence in regard with ath ≤||)(|| *  we have 

2
||)(||

2
1)))((),(()(

2
2**** aththptxftT ≤=ψ . 

As )(tψ  is not identically equal to null (otherwise 

0)(* ≡th ) and the norm ||)(|| tψ  increases unlimitedly at 
Tt → , we get the estimation 

0
||)(||2

||)))((),((||
2

*** →≤
t

athptxf
ψ

. (8) 

From (8) we have the following conclusion. The cor-
rected trajectory of the system (2) comes nearer to (is 
forced out) the vicinity of ),( * rxM e on a regular basis. It 
means that the choice of a point from the set AB  auto-
matically leads to the achievement of the target set by the 
corresponding trajectory )(tx  and to make the process 

))(),(( ** thtx  ],0[ Tt ∈  optimal, it is enough to satisfy the 
condition of transversality at the left end of the trajectory. 
That is in the point *

0x  the condition )( *
00 xΩ⊥ψ  must 

be fulfilled, where )( *
0xΩ  is the tangent manifold to the 

set AB  in the point ABx ∈*
0 . 

Note that the achievement of the target set, which takes 
place in the case, doesn’t necessarily lead to its internal 
stability. Virtually the character of the stability is speci-
fied by the choice of restriction on the corrective pertur-
bation. That is why in addition to the conditions of the 
maximum principle the lower value of mina , at which the 

set ),( * rxM e  is internally stable, must be found by the 
numerical tests of the restrictions ah ≤|||| . 

 
4   Simulation Studies 

In this part we present and discuss the two results of the 
optimal modification in correcting parameters of a family 
of DvdP oscillators. 

Equation (1) is equivalent to the first-order corrected 
system 
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where 
)1( 1

* h+=αα , )1( 2
* h+= ββ , )1( 3

* h+= µµ . 
The Hamilton-Pontryagin function corresponding to (9) 

looks like 
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On the basis of (10) according to (6) we get the general 
form of corrective functions 
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where 
)()()(

~
211 ttxth ψα−= , 

)()()(
~

2
3
12 ttxth ψβ−= , )1)(()(

~ 2
1223 xtxth −= ψµ , 

and a system of conjugate variables 
),,( * ψψ hxH xi −=& , 3,1=i . (12) 

The dynamics of the corrected system was studied at the 
time interval ],0[ T , *TT >> , using the standard proce-



dure of the numerical integration (Runge-Kutta fixed-
step-size forth-order technique).  

At a given value a  of the restriction (3) the optimal 
process ))(),(( ** thtx , ],0[ Tt ∈ , may be found by the 
integration of the n2 -system of the equations made up of 
(9) and (12) with the condition (11). In doing so, the ini-
tial condition for the conjugate vector in the form 

Txx )0,,( 01020 −=ψ  

was used where A
T Bxxx ∈),,( 030201 . 

 
4.1   Single-well Potential 

This case is of interest due to the especial sensitivity of 
the system to very small variations of the parameters. The 
modification of chaotic attractor into a unique stable set 
necessary for the correction of all the parameters 
( ))(),(),(()( *

3
*
2

*
1

* thththth = ) becomes possible with the 
restriction 0015.0||)(|| min =≤ ath . 

Fig. 2 shows that ULS represents a stable cycle, pre-
ceded by a short transient process. The localization and 
characteristics of the cycle are determined by the dynam-
ics of the trajectories on the chaotic attractor and differ 
from the limit cycle of the unforced system ( 0=f , 

0=h ). As the value of the restriction on the corrective 
influence below mina  decreases the transition to chaos 
through the sequence of period-doubling bifurcations is 
observed. 

Qualitative characteristics of ULS found out at multi-
parametrical analyses are universal. The cycle localization 
and bifurcation mechanism of transition of a periodic at-
tractor to chaos are preserved as the number of correct-
able parameters decreases. For example, the minimal re-
striction providing the existence of ULS for the corrective 
function )0,0),(()( *

1
* thth =  is small and constitutes 

004.0min =a . 

 
4.2   Double-well Potential 

The results of correction of a given model are deter-
mined by the simultaneous co-existence of several possi-
ble established regimes in the phase space. The reasons 
for the multistability are the peculiarities of the unforced 
system potential, which is symmetrical and possesses two 
local minimums. Multistability is preserved under correc-
tion and manifests itself in sensitive dependence of ULS 
localization on the chosen initial condition. As a result the 
established regime of the corrected chaotic system turns 
out to be a stable cycle localized in the vicinity either of 
the state 2.1)2( =ex  or 2.1)3( −=ex . The example of the 
first variant with correction at all parameters is shown in 
the Fig. 3. 
The peculiarity of this case is in longer transient process 
duration (Fig. 3,4). It is mostly the motion along the large 
orbit, which bounds the area taken by a chaotic attractor, 
that is it has the maximal period. The transient process 
ends with the  realization of the transition LO→ SO. It is 
accompanied by the stability loss of the large orbit and 
transition to another type of motion (small orbit). The 
cycle realized in doing so is stable and represents ULS of 

the system. Thus, the optimal way of the system to ULS 
may be presented as the following sequence: Chaos →  
LO →  Chaos →  SO. 

The effect of saturation of corrective functions )(*
1 th , 

)(*
2 th at the edge of restriction (Fig.4) which appears on 

reaching ULS is of great interest. Notice that after chaos 
is suppressed two variants of dynamics of optimal correc-
tive functions are realized. The first implies the regular 
switch between the boundaries a+  and a− . It is observed 
in the system correction with single-well potential and in 
the phase of motion along the large orbit in case of dou-
ble-well potential. The saturation occurs only for the sys-
tem with double-well potential when the trajectory ap-
proaches the small orbit which is ULS of the system. The 
moment of saturation coincides with the end of transient 
process and may be taken as a precision criterion of the 
goal achievement. 

 
 

 
 

Figure 2. The result of optimal correction of parameters of DvdP 
oscillator (single-well potential) with restriction 0015.0min =a . 

 

 
 

Figure 3. The result of optimal correction of parameters of DvdP 
oscillator (double-well potential) with restriction  05.0min =a . 



 
 

Figure 4. Time realization of corrected regime of DvdP 
oscillator (double-well potential), 05.0min =a . 

 
The loss of ULS stability is different from chaotization of 
the oscillator with single-well potential. If the restriction 
is less than 05.0min =a  there takes place the increase of 
transient process duration, acquiring more irregular char-
acter. In doing so the duration of the phase of movement 
along the large orbit decreases. In further decrease of re-
striction the chaotic attractor becomes the system limit set 
again. Notice that the peculiarities mentioned above are 
preserved for the corrective function )0,0),(()( *

1
* thth =  

with 07.0min =a . 

 
5   Conclusions 

As shown in this work, multiparametrical optimal cor-
rection is an effective technique of investigation of chaos 
suppression possibility in nonlinear oscillators. Dynamic 
correction of system parameters space is a way of chaos 
control techniques perfection, which focuses attention on 
the evolution of the given chaotic attractor to the stable 
set. System correction provides us with general informa-
tion about physical characteristics of the described object 
in the form of the system reaction on an overall paramet-
ric perturbation. Then comparison and evaluation of per-
turbation efficiency on a concrete parameter become pos-
sible. In practical applications when only a limited num-
ber of parameters are correctable the single parameter 
perturbation becomes more justified and its results are 
predictable. The application of the correction technique to 
a family of DvdP oscillators showed that in both cases 
under investigation ULSs localization allows to identify 
the regime of the system from which the transition to cha-
otic behavior begins. The effect of corrective functions’ 
saturation observed earlier  [Talagaev, Tarakanov, 2007] 
in the correction of Lorenz system is described. 

Hence the value of the presented technique is in the 
possibility to localize the unique stable set in the phase 
regime of the system and to study the peculiarity of the 
optimal transient process which provides the modification 
of a chaotic attractor in this set. In this approach internal 
peculiarities of the system are taken into consideration. 

Evidently, it opens new ways for investigation of the 
questions of bifurcation features of optimal transient 
processes in chaotic attractors not understood before. 
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