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Abstract: In this paper the output regulation problem for nonlinear systems
described by multiple linear models with unknown parameters is considered. Based
on the Lyapunov stability theory, an adaptive controller which stabilize the system
is derived. Then sufficient conditions for the output regulation problem with full
information to be solvable are established. Simulation results are given to illustrate
the theory.
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1. INTRODUCTION

The nonlinear system described by multiple linear
models is a convex combination of systems with
state-dependent nonlinear weights. This class con-
tain the Takagi-Sugeno Fuzzy systems and is in
applications (Feng, 2006),(Yoneyama et al., 2000).
In this paper adaptive output regulation is con-
sidered under the assumption that the underlying
linear systems are of controllable canonical form
with the same structure and contain unknown
parameters. As preliminaries, linear systems are
assumed known, and stabilization and output reg-
ulation is considered. A feedback control is ob-
tained by solving an algebraic Riccati equation
depending on the state variable. Using Lyapunov
theory, local asymptotic stability is proved. Then
assuming that the norm of the reference signal is
small, sufficient conditions for local output regu-
lation are obtained.
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For the unknown system, the state estimator and
adaptive laws for unknown matrix are introduced,
and sufficient conditions for convergence to zero
of the state estimation error are given. To design
feedback gains, a Riccati equation involving the
state of the estimator and estimated matrices is
introduced, and the local asymptotic stability of
the closed loop system is shown. Using this feed-
back and the solution of the regulator equation
for the nonlinear system, local output regulation
is fulfilled.

For numerical simulations, a two-dimensional sys-
tem is introduced and step- and sine-tracking
problems are considered. In the case of adaptive
stabilization and step tracking, the solution of the
Riccati equation converges to constant matrices,
while for sine-tracking they become periodic.

2. OUTPUT REGULATION OF NONLINEAR
SYSTEMS DESCRIBED BY MULTIPLE

LINEAR MODELS

Consider the nonlinear system described by mul-
tiple linear models



ẋ =
r∑

i=1

λi(x)Aix + B1w +
r∑

i=1

λi(x)B2iu,

r∑
i=1

λi(x) = 1,

z = C1x + D11w + D12u

(1)

where x ∈ R
n is the state, u ∈ R

m is the control
and z ∈ R

q is the output to be regulated and r
denotes the number of local models. The matrices
Ai, B1, B2i, C1 and D11 are constant and of
appropriate dimensions. λi(x) are continuously
differentiable functions of state x.

The signal w ∈ R
s denotes disturbances or refer-

ence signals generated by an anti-stable exosystem

ẇ = Sw. (2)

We assume that the state x is accessible and
consider the regulation problem for (1) under the
following conditions.

Assumption 2.1. D12 = 0 and (Ai, B2i) is control-
lable canonical form of the same structure each i
and C1 has the structure

C1 =
[
C1 C2 · · · Cm

]
, (3)

Ci =




0
...

1 0
...
0



∈ R

q×ni , (4)

where the i-th elements of the first column of Ci

are one.

Note that if each (Ai, B2i) is in the control-
lable canonical form of the same structure then

(
r∑

i=1

λi(x)Ai,
r∑

i=1

λi(x)B2i) is also in the control-

lable canonical form for any x.

2.1 Preliminaries

We consider the algebraic Riccati equation:

AT (x)X + XA(x) + CT C − XB(x)B(x)T X = 0.
(5)

Lemma 2.1. Let (A(x),B(x),C) be stabilizable
and detectable for x in an open set N . Then there
exists a unique solution X = X(x) of (5) which
is continuous and continuously differentiable with
respect to x ∈ N . Moreover, if x stays in a

compact domain,
∂X

∂x
is bounded.

We consider the regulator equation (Saberi et
al., 2000):

AΠ − ΠS + B1 + B2Γ = 0,

C1Π + D11 + D12Γ = 0.
(6)

Lemma 2.2. Let (A, B2) be in the controllable
canonical form. Then the regulator equation ex-
ists. Moreover Π does not depend on the parame-
ters of A and B2.

2.2 Stabilization

Consider the regulation problem of (1) with
w = 0. Let Q be positive-definite. Then (C,

r∑
i=1

λi(x)Ai) is observable where C =
√

Q. Since

(
r∑

i=1

λi(x)Ai,
r∑

i=1

λi(x)B2i) is stabilizable by As-

sumption 2.1, there exists a positive stabilizing
solution X of the algebraic Riccati equation

(
r∑

i=1

λi(x)Ai)T X + X(
r∑

i=1

λi(x)Ai) + Q

−X(
r∑

i=1

λiB2i(x))(
r∑

i=1

λiB2i(x))T X = 0. (7)

Now we set

r∑
i=1

λiAi � A,

r∑
i=1

λiB2i � B2.

and introduce the control law

u = −BT
2 X(x)x (8)

and consider the stability of the control system.

Theorem 2.1. The equilibrium xe = 0 of the
system (1) is locally asymptotically stable.

Proof 2.1. Substituting (8) into (1) , we have

ẋ = (A − B2B
T
2 X)x (9)

Consider the Lyapunov function candidate

V (x) = xT X(x)x. (10)

The time derivative of (10) along the solutions of
(9) is given by

V̇ (x) = [(Xx)T + xT X

+xT (∇x ⊗ X)(In ⊗ x)](A − B2B
T
2 X)x

≤−xT [Q − (∇x ⊗ X)(In ⊗ x)(A − B2B
T
2 X)]x

where ∇x =
[

∂

∂x1
, · · · ,

∂

∂xn

]
and ⊗ denotes

Kronecker product. We set Ω = {x ∈ R
n| Q −

(∇x⊗X)(In⊗x)(A−B2B
T
2 X) > 0}. If x ∈ Ω then

V̇ ≤ 0. Hence the origin is locally asymptotically
stable. �



2.3 Output regulation

Consider the output regulation problem associ-
ated with (1). By Assumption 2.1 and Lemma
2.2, there exists a solution (Π, Γ) of the regulator
equation

(
r∑

i=1

λi(x)Ai)Π − ΠS + B1 + (
r∑

i=1

λi(x)B2i)Γ = 0,

C1Π + D11 + D12Γ = 0,

(11)

such that Π is a constant matrix. We choose the
controller

u = −BT
2 (x)X(x)x + (Γ(x) + BT

2 (x)X(x)Π)w,
(12)

where X(x) is the solution of the Riccati equation
(7).

Theorem 2.2. Under Assumption 2.1, the local
output regulation is fulfilled i.e., lim

t→∞ z(t) = 0.

Proof 2.2. Substituting (12) into (1), we have

ẋ = (A − BT
2 BT

2 X)x + (B1 + Γ + BT
2 X)w

� Afx + Bw, (13)

Consider V1(x) = xT X(x)x. The time derivative
of V1(x) along the solution of (13) is given by

V̇1 ≤−xT [Q − (∇x ⊗ X)(In ⊗ x)(Afx + Bw)]x

+2xT XBw. (14)

There exist ε, α > 0 such that |w| ≤ ε and
V1(x) ≤ α imply V̇1 ≤ −δV1 + β|w|2 and βε2

δ < α
for some β. By integrating (14) we have

V1(x(t)) ≤ e−δtV1(x0) +
β

δ
|w|2.

Now choose α0 such that α0+ βε2

δ < α and x0 such
that V1(x0) ≤ α0. The solution of (13) starting
from x0 stays in Ω = {x|V1(x) ≤ α} for all t ≥ 0.
Consider

x̃ = x − Πw

then

˙̃x = (A − B2B
T
2 X)x̃ = Af x̃. (15)

Consider V2(x, x̃) = x̃T X(x)x̃. The time deriva-
tive of V2(x) along the solutions of (15) is given
by

V̇ ≤−x̃T [Q − (∇x ⊗ X)(In ⊗ x)(Afx + Bw)]x̃

<−δ′|x̃|2, (16)

where the inequality holds since x ∈ Ω and |w| ≤ ε
for all t ≥ 0. Then the origin of (15) is locally
asymptoticaly stable. Now

z = C1x + D11w + D12u

= (C1 − D12B
T
2 X)x̃ + (C1Π + D11 + D12Γ)w

= (C1 − D12B
T
2 X)x̃ → 0.

Hence local output regulation is achieved. �

3. ADAPTIVE REGULATION AND
ADAPTIVE OUTPUT REGULATION

Consider the nonlinear system described by mul-
tiple linear models

ẋ =
r∑

i=1

λi(x)Aix + B1w +
r∑

i=1

λi(x)B2iu,

r∑
i=1

λi(x) = 1,

z = C1x + D11w + D12u,

(17)

where the constant matrices Ai,B2i contain un-
known parameters and the other matrices are
assumed to be known. We assume Ai, B2i and
C1 satisfy Assumption 2.1 Note that if each (Ai,
B2i) is in the same controllable canonical form

then (
r∑

i=1

λi(x)Ai,
r∑

i=1

λi(x)B2i) is also control-

lable canonical form for any unknown parameters
of (Ai, B2i) and for any x.

3.1 Adaptive regulation

First we consider the stabilization problem. Intro-
duce an estimator and adaptive laws of the form

˙̂x = Amx̂ +
r∑

i=1

λi(x)(Âi − Am)x + B1w

+
r∑

i=1

λi(x)B̂2iu, (18)

˙̂
Ai = Φ̇i = −λi(x)PexT ,

˙̂
B2i = Ψ̇2i = −λi(x)PeuT ,

(19)

where Am is an n × n stable matrix, P is the
solution of the following matrix equation

AT
mP + PAm = −Q0

for some positive-definite matrix Q0 and

e = x̂ − x, Φi = Ai − A, Ψ2i = B̂2i − B2.

Then the error equation is given by

ė = Ame +
r∑

i=1

λi(x)(Φix + Ψ2iu). (20)

If some elements of Ai and B2i are known, we can
omit their adaptive laws in (19), but for notational
convenience we use (19).



Theorem 3.1. If x(t) and u(t) is bounded for all
t ≥ 0, then (20) and (19) is globally stable.

Proof 3.1. Consider the Lyapunov function can-
didate

V (e, Φi, Ψ2i)

= eT Pe +
r∑

i=1

tr(ΦT
i Φi + ΨT

2iΨ2i), (21)

where trA denotes the trace of the matrix A. The
time derivative of (21) along the solutions of (20)
is given by

V̇ (e, Φi, Ψ2i) = −eT Q0e ≤ 0.

Hence the origin of (19) and (20) is globally stable.
It follows that e, Φi and Ψ2i are bounded for all
t ≥ 0 and e ∈ L2. �

Let Q be positive-definite. Then (C, Â) is observ-

able where C =
√

Q. Since ((
r∑

i=1

λi(x(t))Ai(t),

r∑
i=1

λi(x(t))Bi(t))) is stabilizable by Assumption

2.1 for each t there exists a positive stabilizing
solution X of the algebraic Riccati equation

(
r∑

i=1

λi(x)Âi)T X + X(
r∑

i=1

λi(x)Âi) + Q

−X(
r∑

i=1

λi(x)B̂2i)(
r∑

i=1

λi(x)B̂2i)T X = 0. (22)

Now we set

r∑
i=1

λiÂi � Â,

r∑
i=1

λiB̂2i � B̂2,

θ = [vec Φ1, · · · , vec Φr, vec Ψ1, · · · vec Ψr]T

and introduce the control law

u = −B̂T
2 X(x, θ)x̂ (23)

and consider the stability of the adaptive control
system.

Theorem 3.2. For sufficiently small x(0), x̂(0),
e(0) and θ(0), x, x̂, e and θ is bounded and
lim

t→∞ e(t) = 0. Moreover, if w = 0 then lim
t→∞x(t) =

0.

Proof 3.2. Substituting (23) into (17) and (18) ,
we have

ẋ = (Â − B̂2B̂
T
2 X)x +

r∑
i=1

λi(x)(Φix − ΨiB̂
T
2 Xx̂)

+(B1 + B̂2Γ + B̂2B̂
T
2 Π)w.

� Âfx + Φx + Ψx̂ + Bw (24)
˙̂x = (Â − B̂2B̂

T
2 X)x̂ + (Am − Â)e + B1w

� Âf x̂ + Ee + B1w. (25)

Consider V1 = xT X(x, θ)x. The time derivative of
V1(x) along the solution of (25) is given by

V̇1 ≤ −xT [Q

−(∇x ⊗ X)(In ⊗ x)(Âfx + Φx + Ψx̂ + Bw)

−(∇θ ⊗ X)(I2r ⊗ θ)θ̇]x

+2xT XΦx + xT XΨx̂ + 2xT XBw.

(26)

There exist εe, εw, α > 0 such that |e|, |θ| ≤ εe

, |w| ≤ εw and V1(x) ≤ α imply V̇1 ≤ −δV1 +
β1|w|2 +β2x̂

T Xx̂ and β1ε2w
δ + β2ρ

δ < α for some β1,

β2 and ρ. Now choose α0 such that α0 + β1ε2w
δ +

β2ρ
δ < α and x0 such that V1(x0) ≤ α0. Now

consider V2 = x̂T X(x, θ)x̂. The time derivative
of V2(x̂) along the solution of (25) is given by

V̇2 ≤ −x̂T [Q

−(∇x ⊗ X)(In ⊗ x)(Âfx + Φx + Ψx̂ + B̂1w)

−(∇θ ⊗ X)(I2r ⊗ θ)θ̇]x̂

+2xT XΦx + x̂T XEe + 2x̂T XBw.

≤ −δV2 + β3|e|2 + β4|w|2. (27)

Choose ρ0 such that ρ0 + β3ε2w
δ + β4ε2e

δ < ρ and x̂0

such that V2(x̂0) ≤ ρ0. Then the solution starting
from x0, x̂0 stays in Ω = {x, x̂|V1(x) ≤ α, V2(x̂) ≤
ρ}.
Now, we conclude from (20) that ė is bounded.
Therefore by Barbalat’s lemma (Narendra & An-
naswam, 1989) we obtain lim

t→∞ e(t) = 0. If in

particular w = 0 then lim
t→∞ x̂(t) = 0 and hence

lim
t→∞x(t) = 0. �

3.2 Adaptive output regulation

Now we consider the adaptive output regulation
problem associated with (17), (18) and (19). In
this case regulator equation is given by

ÂΠ − ΠS + B1 + B̂2Γ = 0,

C1Π + D11 + D12Γ = 0.
(28)

By Assumption 2.1 and Lemma 2.2, there exists a
solution (Π, Γ) of (28) such that Π is an constant
matrix. We choose the controller

u = −B̂T
2 X(x, θ)x̂ + (Γ(x, θ) + B̂T

2 X(x, θ)Π)w,
(29)



where X(x, θ) is the solution of the Riccati equa-
tion (22) corresponding to (17), (18) and (19). The
following result is obtained.

Theorem 3.3. For sufficiently small x(0), x̂(0),
e(0) and θ(0), the adaptive local output regulation
is fulfilled i.e., lim

t→∞ z(t) = 0.

Proof 3.3. Choose x(0), x̂(0), e(0) and θ(0) as
Theorem 3.2. Consider

x̃ = x̂ − Πw

then

˙̃x = (Â − B̂2B̂
T
2 X)x̃ + (Am − Â)e.

Since homogeneous part is asymptotically stable
and limt→∞ e(t) = 0 by Theorem 3.2, lim

t→∞ x̃(t) =
0. Now

z = C1x + D11w + D12u

= (C1 − D12B̂
T
2 X)x̃ + C1e → 0.

Hence local output regulation is achieved. �

4. SIMULATION RESULTS

Example 4.1

Consider the nonlinear mass-spring system

ξ̈ = −0.01ξ − 0.67ξ3 + u, (30)

The nonlinear term satisfies the following condi-
tions for ξ ∈ [ − 1 1]:

−0.67ξ � −0.67ξ3 � 0ξ, ξ � 0,

0ξ � −0.67ξ3 � −0.67ξ, ξ � 0.

Hence it can be represented by the following
nonlinear system:

ẋ =
2∑

i=1

λi(x)(Aix + Biu), (31)

where

A1 =
[

0 1
a1 a2

]
, A2 =

[
0 1
a3 a4

]
,Bi =

[
0
1

]
,

x =
[

ξ

ξ̇

]
, λ1(x) = 1 − ξ2, λ2(x) = ξ2,

a1 = −0.01, a2 = 0, a3 = −0.68, a4 = 0.

Here ai regarded unknown, but λi are given func-
tions, and state x is accesible. This is an exam-
ple of the nonlinear system described by multiple
linear models (17). We consider the adaptive reg-
ulation problem for this system. The simulation
result with x(0) = [0.8 0]T is given in Figure 1.

The solution of the Riccati equation (22) is also
shown in Figure 2.

Example 4.2

For the system (30) we design a state feedback
controller such that x1(t) → 0.5. For this purpose
we set C1 = 1, D11 = −1 and take the following
exosystem

S = 0, w(0) = 0.5.

In this case Π = [1 0]T . The simulation result with
x(0) = [0.8 0]T , âi(0) = 0 and b̂1(0) = 0 is shown
in Figure 3.

Example 4.3

Here (30) we design a state feedback controller
such that x1(t) → 0.3sin(t). In this case we set
C1 = [1 0], D11 = [−1 0] and take the following
exosystem

S =
[

0 1
−1 0

]
.

Then Π = I2. The simulation result with x(0) =
[0.1 0]T , w(0) = [0 0.3]T , Figures 5 and 6
show the simulation results when all the matrices
are assumed to be known. Figures 7 and 8 show
the simulation results with small initial conditions
and parameter errors. In either case the output z
goes to zero. In this example Ẋ does not go to zero
but assumption in the Theorem 2.2 and Theorem
3.3 hold.
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Fig. 2. Solution of the Riccati equation.
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Fig. 5. Sine tracking(known model).
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Fig. 6. Solution of the Riccati equation.
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Fig. 7. Sine tracking(adaptive).
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