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Abstract: This paper proposes a moving horizon simultaneous estimation of process
gain and disturbances for discrete-time linear systems with unknown process gain
so as to minimize a moving-horizon performance index. The proposed method uses
discrete-time Euler-Lagrange equations in order to derive the proposed adaptive
disturbance estimator. A numerical simulation for an oxygen converter gas recovery
process shows the efficiency of the proposed method.
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1. INTRODUCTION

Simultaneous estimation of disturbance and a
process gain is an important issue in the field
of industrial process control because disturbance
and change of a process gain over a lapse of time
are inevitable in real processes. Hence, several
researches have been studied on the topics of
disturbance and parameters estimation.

An adaptive observer (Kreisselmeier, 1977) is
a standard approach for estimating both state
variables and parameters of controlled processes.
However, since it is not designed for estimat-
ing disturbances in itself, some modifications are
required to realize simultaneous estimation of

disturbance and a process gain. Using an ex-
tended kalman filter was presented in Keller and
Darouach (1999) for simultaneous estimation of
disturbance and process parameters by regarding
unknown parameters as constant state variables
the initial values of which are unknown. However,
it just concerns random disturbances mean values
of which are constant. Hence, it is not adequate
for simultaneous estimation of disturbance with
large variation and a process gain.

Therefore, this paper proposes an adaptive dis-
turbance estimator for discrete-time, single-input,
single-output, linear time-invariant processes to
estimate both unknown process gain and dis-
trubances with large variation. The strategy for



the proposed adaptive disturbance estimator is
to minimize a moving-horizon performance index
which consist of quadratic forms of estimated out-
put error and disturbances. Ohtsuka (1999) has al-
ready proposed an adaptive disturbance estimator
which minimizes a moving-horizon performance
index. However, while it deals with a continuous-
time system, this paper deals with a discrete-time
system. Hence, the proposed method is an exten-
sion of the earlier work to a discrete-time version.
That can be done by using discrete-time Euler-
Lagrange equations. Furthermore, this paper gives
a calclulation algorithm in the form of the Ricatti
type of recursion formula.

The proposed method is applied to the approxi-
mated process model of an oxygen converter gas
recovery process (Yoshida et al., 1988). Through
a numerical simulation the efficiency of the pro-
posed method will be shown.

2. MOVING HORIZON ADAPTIVE
DISTURBANCE ESTIMATOR

2.1 Case of a Nonlinear Process

Consider a discrete-time, nonlinear process as
shown here.

xk+1 = f(xk, uk, dk) (1)

yk = h(xk, vk) (2)

where xk, uk, dk and vk are the state vectors,
the control input signals, the disturbance signals,
and measured noise signals at the time k. For
the process Eqn. (1) and Eqn. (2), we consider
estimating the state vector xk and disturbance
dk.

This paper formulates it as a receding horizon
optimization problem where the following perfor-
mance index should be optimized.

Jk = η[x̂0,k, u0,k, y0,k]

+ϕ[x̂−N,k, u−N,k, y−N,k]

+
−1∑

τ=−N

L[x̂τ,k, uτ,k, yτ,k, d̂τ,k] (3)

s.t. x̂τ+1,k = f(x̂τ,k, uτ,k, d̂τ,k),

τ = −N,−N + 1, · · · ,−1 (4)

The performance index evaluates the integrated
value based on the input-output data from the
present time k to the past N step past time.
When L[ · ] evaluates the norm of the error signal
between the estimated output ŷk = h(x̂k, 0) and
measured output yk, the optimal values of

x̂τ,k, τ = −N,−N + 1, · · · , 0,

d̂τ,k, τ = −N,−N + 1, · · · ,−1

become the optimal state vector and the esti-
mated disturbance based on the evaluation of
input-output signals from the present time k to
the N steps past time. The performance index Jk

moves the evaluation range as the present time k
goes by. Therefore, the estimated value of state
variable at the present time k becomes x̂0,k and
the estimated disturbance becomes d̂0,k.

The next theorem gives the necessary condition
of x̂τ,k and d̂0,k where the performance index
Jk should be optimized, which is the discrete-
time Euler-Lagrange equation. Subsequently, we
denote L[ · ], f [ · ], η[ · ] and ϕ[ · ] in Eqn. (1) and
Eqn. (3) as Lτ,k, f τ,k, η0,k and ϕ−N,k.

Theorem 1. Let the Hamiltonian be defined as

Hτ,k = Lτ,k + λT
τ+1,kfτ,k (5)

Then, the necessary condition of x̂τ,k and d̂τ,k

which optimize the performance index Eqn. (3)
and Eqn. (4) is given by the following discrete-
time Euler-Lagrange equations.

∂

∂x̂τ,k
Hτ,k = λT

τ,k, τ = −1,−2, · · · ,−N + 1

(6)

x̂τ+1,k = fτ,k, τ = −N,−N + 1, · · · ,−1

(7)
∂

∂d̂τ,k

Hτ,k = 0, τ = −N,−N + 1, · · · ,−1

(8)
∂

∂x̂0,k
η0,k = λT

0,k (9)

∂

∂x̂−N,k
ϕ−N,k = − ∂

∂x̂−N,k
H−N,k (10)

where, λτ,k is a costate vector the order of which
is the same as one of the state vector x̂τ,k.

(Proof) Incorporating the constraints of dif-
ference equations Eqn. (4) in terms of x̂τ,k into
the performance index Jk in Eqn. (3) using costate
λτ,k we get the following equation.

J∗
k = η0,k + ϕ−N,k

+
−1∑

τ=−N

{
Lτ,k + λT

τ+1,k

(
f τ,k − x̂τ,k − Δx̂τ,k

)}
(11)

where Δx̂τ,k is increments of x̂τ,k, which is defined
as

Δx̂τ,k = x̂τ+1,k − x̂τ,k (12)

Hence, when x̂τ,k is satisfied with the difference
equation Eqn. (4), J∗

k corresponds to Jk.



Now, consider the first variation δJ∗
k of J∗

k . Since
the independent variables of J∗

k are x̂τ,k, Δx̂τ,k,
d̂τ,k and λτ+1,k, the first variation δJ∗

k becomes

δJ∗
k =

∂

∂x̂0,k
η0,kδx̂0,k +

∂

∂x̂−N,k
ϕ−N,kδx̂−N,k

+
−1∑

τ=−N

{[
∂

∂x̂τ,k
Hτ,k − λT

τ+1,k

]
δx̂τ,k

+
∂

∂d̂τ,k

Hτ,kδd̂τ,k

−λT
τ+1,kδΔx̂τ,k +

(
fτ,k − x̂τ+1,k

)T
δλτ+1,k

}
(13)

Noting that the following equation is derived from
Eqn. (12),

δΔx̂τ,k = δ (x̂τ+1,k − x̂τ,k)

= δx̂τ+1,k − δx̂τ,k (14)

we can get

−
−1∑

τ=−N

λT
τ+1,kδΔx̂τ,k

= −
−1∑

τ=−N

λT
τ+1,k (δx̂τ+1,k − δx̂τ,k)

= −
−1∑

τ=−N

λT
τ+1,kδx̂τ+1,k +

−1∑
τ=−N

λT
τ+1,kδx̂τ,k

(15)

Replacing τ with τ ′ = τ + 1 in the first term of
the righthand side of the above equation, it follows
that

−
−1∑

τ=−N

λT
τ+1,kδx̂τ+1,k = −

0∑
τ ′=−N+1

λT
τ ′,kδx̂τ ′,k(16)

Hence, we can get

−
−1∑

τ=−N

λT
τ+1,kδΔx̂τ,k

=
−1∑

τ=−N+1

(
λT

τ+1,k − λT
τ,k

)
δx̂τ,k

−λT
0,kδx̂0,k + λT

−N+1,kδx̂−N,k (17)

In addition, noting that the third term of the
righthand side of Eqn. (13) can be rewritten into
the following equation

−1∑
τ=−N

{[
∂

∂x̂τ,k
Hτ,k − λT

τ+1,k

]
δx̂τ,k

}

=
−1∑

τ=−N+1

{(
∂

∂x̂τ,k
Hτ,k − λT

τ+1,k

)
δx̂τ,k

}

+
(

∂

∂x̂−N,k
H−N,k − λT

−N+1,k

)
δx̂−N,k (18)

δJ∗
k in Eqn. (13) becomes

δJ∗
k =

(
∂

∂x̂0,k
η0,k − λT

0,k

)
δx̂0,k

+
∂

∂x̂−N,k
(H−N,k + ϕ−N,k) δx̂−N,k

+
−1∑

τ=−N+1

{(
∂

∂x̂τ,k
Hτ,k − λT

τ,k

)
δx̂τ,k

}

+
−1∑

τ=−N

{
∂

∂d̂τ,k

Hτ,kδd̂τ,k

}

+
−1∑

τ=−N

{(
fτ,k − x̂τ+1,k

)
δλτ+1,k

}
(19)

Since the first variation should be zero from the
necessary condtion of optimality, the conclusions
of the theorem can be introduced. �

From the theorem 1, we can see that the optimal
condition of estimated disturbances and states
for the performance index Eqn. (3) is given by
two-point boundary value problems of difference
equation

2.2 Case of a Linear System with Unknown
Process Gain

Consider a single-input, single-output, discrete-
time, linear system with unknown process gain
given in the next state-space equations.

x[k + 1] = Ax[k] + θBu[k] + Ed[k] (20)

y[k] = Cx[k] (21)

where x[·] ∈ Rn, u[·] ∈ R1 y[·] ∈ R1 and
d[·] ∈ R1 are state vectors, input signals, output
signals and disturbances, respectivey. θ ∈ R1 is
an unknown process gain. The design method is
given for the time-invariant systems (A,B, C)
for simplicity of discussion. However, it can be
straightforwardly extended to the time-variant
case (A[k], B[k], C[k]).

We regard unkown process gain θ̂[k] as a state
variable the initial value of which is unknown, and
define the extended state vector in the following
way.

x̂e[k] =
[

x̂[k]
θ̂[k]

]
(22)

In addtion, let the estimated disturbances be
denoted as d̂[k]. Then, we can give the state
estimation model in the following way.



x̂e[k + 1] = Ae[k]x̂e[k] + Bed̂[k] (23)

ŷ[k] = Cex̂e[k] (24)

where

Ae[k] �=
[

A[k] Bu[k]
0 I

]
, Be

�=
[

E
0

]
,

Ce
�=

[
C 0

]
Let the estimated error ε[·] be defined as,

ε[·] = ŷ[·] − y[·] (25)

and the performance index be defined as

Jk = ε[k − N ]TQsε[k − N ]

+ε[k]TQfε[k]

+
k−1∑

τ=k−N

{
ε[τ ]TQε[τ ] + d̂[τ ]TRd̂[τ ]

}
(26)

where Qs,Qf ,Q is positive semi-definite matrix,
and R is a positive parameter. The performance
index consists of the sum of the quadratic form
of estimation errors and estimated disturbance
values from the present time k to the N -steps past
time k − N .

Then the discrete Euler-Lagrange equation which
give a necessary condition of optimal estimation
of disturbances and state vector can be derived in
the following two-point boundary-value (TPBV)
recursion formulas.

λ[τ ] = Ae[τ ]Tλ[τ + 1] + 2CT
e QCex̂e[τ ]

−2CT
e Qy[τ ], (27)

τ = k − 1, k − 2, · · · , k − N + 1

x̂e[τ + 1] = Ae[τ ]x̂e[τ ] + Bed̂[τ ], (28)

τ = k − N, k − N + 1, · · · , k − 1

d̂[τ ] =−1
2
R−1BT

e λ[τ + 1], (29)

τ = k − N, k − N + 1, · · · , k − 1

λ[k] = 2CT
e QfCex̂e[k] − 2CT

e Qfy[k] (30)

0 = CT
e (Qs + Q)y[k − N ]

−CT
e (Qs + Q)Cex̂e[k − N ]

−1
2
Ae[k − N ]Tλ[k − N + 1] (31)

The next proposition gives a simultaneous dis-
turbance and state vector estimation algorithms
Ricatti type recursion formulas using the optimal
necessary conditions Eqn. (27) ∼ Eqn. (31).

Proposition 2. Let the costate λ[τ ] be defined as

λ[τ ] = 2P [τ ]x̂e[τ ] + 2α[τ ] (32)

Then, a simultaneous disturbance and state vector
estimation algorithms is given in the following
steps.

(1) Let the terminal condition be defined as

P [k] = CT
e QfCe (33)

α[k] =−CT
e Qfy[k] (34)

Then, solve the following difference equation
backward in the manner of τ = k − 1, k −
2, · · ·k−N to get P [k−1], P [k−2], · · · , P [k−
N ], α[k − 1], α[k − 2], · · · , α[k − N ],

P [τ ] = CT
e QCe + Ae[τ ]TP [τ + 1]Ae[τ ]

−Ae[τ ]TP [τ + 1]Be

×
(
R + BT

e P [τ + 1]Be

)−1

×BT
e P [τ + 1]Ae[τ ] (35)

α[τ ] = Ae[τ ]Tα[τ + 1]

−AT
e [τ ]P [τ + 1]Be

×
(
R + BT

e P [τ + 1]Be

)−1

×BT
e α[τ + 1] − CT

e Qy[τ ] (36)

(2) Using P [k−N ],α[k−N ], Solve the following
linear equation to get x̂e[k − N ].(

CT
e QsCe + P [k − N ]

)
x̂e[k − N ]

= CT
e Qsy[k − N ] − α[k − N ] (37)

(3) Calculate the estimated disturbance and
state vectors using the following equation
and state equation Eqn. (28)

d̂[τ ] =−(R + BT
e P [τ + 1]Be)−1

×BT
e P [τ + 1]Ae[τ ]x̂e[τ ]

−(R + BT
e P [τ + 1]Be)−1BT

e α[τ + 1]

(38)

to get

x̂e[τ ], τ = k − N, k − N + 1, · · · , k,

d̂[τ ], τ = k − N, k − N + 1, · · · , k − 1

(Proof) The conditions Eqn. (30) can be
straightforwardly derived from Eqn. (32) when
P [k] and α[k] are Eqn. (33) and Eqn. (34), re-
spectively.

From Eqn. (28), Eqn. (29) and Eqn. (32), it
follows that

d̂[τ ] =−R−1BT
e P [τ + 1]x̂e[τ + 1] − R−1BT

e α[τ + 1]

=−R−1BT
e P [τ + 1]Ae[τ ]x̂e[τ ]

−R−1BT
e P [τ + 1]Bed̂[τ ]

−R−1BT
e α[τ + 1] (39)

which leads to estimated disturbances Eqn. (38).



Applying Eqn. (32) to Eqn. (27), we can get

2P [τ ]x̂e[τ ] + 2α[τ ]

= Ae[τ ]T (2P [τ + 1]x̂e[τ + 1] + 2α[τ + 1])

+2CT
e QCex̂e[τ ] − 2CT

e Qy[τ ] (40)

Then, we can see that the optimal condition Eqn.
(27) is satisfied from Eqn. (35) and Eqn. (36)
by using state equations Eqn. (28) and estimated
disturbances Eqn. (38), and rearranging in terms
of P [τ ] and α[τ ].

Finally, we can get Eqn. (37) using Eqn. (35) and
Eqn. (36) at τ = k − N after applying Eqn. (31)
to Eqn. (32) at τ = k − N + 1 and Eqn. (28) and
Eqn. (38) at τ = k − N and rearranging in terms
of x̂e[k − N ]. �

3. AN APPLICATION TO OXYGEN
CONVERTER GAS RECOVERY PROCESS

MODEL

Fig. 1. Oxygen Converter Gas Recovery Process

In the Oxygen Converter Gas Recovery (OG)
Processes depicted in Fig. 1 the pressure control
in the converter is required to be a prescribed
value using a control damper as manipulated
variables in order to improve the efficiency of
gas recovery process. However, the generated gas
volume, which is regarded as disturbances, is
unknown, and the process gain from the control
damper open to the pressure in the converter
greately varies. Hence, the process gain should be
unknown parameter to be estimated.

3.1 Oxygen Converter Gas Recovery Process Model

An approximated model of OG Process model
is given by the following equations (Yoshida et
al., 1988).

P0(s) =
1

1 + TP s

(
KP

1 + TDs
e−LDsU(s) (41)

+KP KGf0(s))

where TP is the pressure transducer time con-
stant, TD is the control damper time constant,

LD is the time lag of the control damper, KP is
the process gain, and KG is the gain from the
generated gas flow to the pressure in the converter.
The manipulated variable u(·) is the damper open,
and the controlled variable P0(·) is the pressure in
the converter. f0(·) is the generated gas flow which
works as disturbance which causes deviation from
the regulated set value of the pressure in the con-
verter. This paper assumes that the parameters
TP , TD, LD are known a priori, but KP , KG are
unknown parameters, and the disturbance f0(s)
is unknown. This section considers the problem
to estimate the process gain KP and the dis-
turbance KGf0(s) simultaneously in the on-line
manner from the time series data of pressure in
the converter and the control damper open which
are the input-output signals.

Let x1(t) and x2(t) be defined as

L[x1(t)] =
KP

1 + TDs
e−LDsU(s) (42)

L[x2(t)] =
1

1 + TP s
(x1(s) + KP KGf0(s))(43)

then, the state realization of the process Eqn. (42)
is given by

d

dt

[
x1(t)
x2(t)

]
= Ac

[
x1(t)
x2(t)

]
+ KpBcu(t − LD)

+EcKP KGf0(t) (44)

y(t) = Cc

[
x1(t)
x2(t)

]
(45)

where

Ac
�=

⎡
⎢⎣− 1

TD
0

1
TP

− 1
TP

⎤
⎥⎦ , Bc

�=

⎡
⎣ 1

TD
0

⎤
⎦ ,

Ec
�=

⎡
⎣ 0

1
TP

⎤
⎦ , Cc

�=
[
0 1

]

The next, let the equivalent discrete-time model
be derived using zero order hold, where sampling
time is Ts.

[
x1[k + 1]
x2[k + 1]

]
= Ad

[
x1[k]
x2[k]

]
+ KpBdu[k − ld]

+Edd[k] (46)

y[k] = Cd

[
x1[k]
x2[k]

]
(47)

where

Ad
�= eAcTs , Bd

�=

Ts∫
0

eAcτBcdτ,

Ed
�=

Ts∫
0

eAcτEcdτ, Cd
�= Cc



LD
�= ld · Ts, d[k] �= KP KGf0[k]

Then, replace the unknown process gain KP by
unknown parameter θ, and define the extended
state vector in which the estimated parameter
θ̂ is incorporated as Eqn. (22), and define the
extended system matrices as

Ae[k] �=
[

Ad Bdu[k − ld]
0 I

]
, Be

�=
[

Ed

0

]
,

Ce
�=

[
Cd 0

]
we can formulate the Eqn. (24) from the OG
process model Eqn. (46) and Eqn. (47). Hence,
we can apply the proposition 2 to the OG process
model, and estimate both disturbance and process
gain simultaneously.

3.2 A Simulation Result
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Fig. 2. Simulation result of moving horizon opti-
mal estimation of pressure, process gain and
disturbance

In a numerical simulation, we set the parameters
TD = 0.5, TP = 2.0, LD = 2.0 Kg = 1.0× 10−4 in
Eqn. (46) and Eqn. (47), and the sampling time
Ts = 0.2[sec].

It is assumed that the process gain keeps KP =
−200 until the time 120[sec], then changes into
KP = −800. The disturbance d(t) is assumed to
be the following equation.

d(t) = 40KpKG sin(0.04πt) + 60KpKG (48)

The manipulated variable, which is the con-
trol damper open, is a PRBS signal with range

[−0.2, 0.2]. The parameters of the performance
index are set to be the evaluation range N =
250[step] (50[sec]), and the weighting matrices
Q = Qs = Qf = 100, R = 1.

Fig. 2 shows that simulation results of moving
horizon optimal estimation of pressure, process
gain and disturbance for an approximated second
order OG process model. From the results, it
follows that a process gain can be estimated very
well even when it changes from KP = −200 to
KP = −800 at the time 120[sec], and disturbance
can also be estimated almost well although large
oscillation of the estimated disturbance signal
occurs from the time at which the process gain
changes to the time at which the estimation of
the process gain succeed to follow the new value
KP = −800. From a numerical simulation, we
can see that the proposed method works well for
the approximated second order OG process model
with the large disturbance.

4. CONCLUDING REMARKS

This paper newly proposed a disrete-time moving-
horizon adaptive disturbance estimator to esti-
mate both the process gain and distrubances si-
multaneously so as to minimize a moving hori-
zon performance index. In addition, a numerical
simulation for the approximated second order OG
process model of an oxygen converter gas recovery
process was done, and we made assure that the
proposed method worked well for the given model
through a numerical simulation.

Application of the proposed method to the input-
output data from a real process, and the control
system design using estimated disturbance and
the process gain remain for future works.

REFERENCES

Keller, J. Y. and M. Darouach (1999). Two-stage
kalman estimator with unknown exogenous
inputs. Automatica 35, 339–342.

Kreisselmeier, G. (1977). Adaptive observer with
exponential rate of convergence. IEEE Trans.
on Automatic Control AC-22-1, 1–8.

Ohtsuka, T. (1999). Nonlinear receding-horizon
state estimation with unknown disturbances.
Trans. of the Society of Instrument and Con-
trol Engineers 35-10, 1253–1260.

Yoshida, T., M. Yoneda and S. Kawai (1988). Ox-
gen converter gas recovery processes cotrol (in
japanese). Journal of the Society of Instru-
ment and Control Engineers.


