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Abstract
The numerical simulation of computers is an impor-

tant approach for studying chaotic systems. The basic
structure of real trajectories of the logistic map can be
observed by using the iterative method with lower po-
sitions, which includes the root gene position, the com-
mon gene position and the individual gene position.
The invariable inherited genetic position of a real tra-
jectory as the root gene position represents the funda-
mental characteristic of the trajectory, which will be in-
herited by each true numerical solution within the real
trajectory. In this paper, the two types of real trajecto-
ries of the logistic map are introduced, which include
the divergence trajectory and the convergence trajec-
tory. The property of the root gene position of diver-
gence trajectories is presented. The maximum number
of the root gene position is proved as the length of the
root gene position is equal to 1. Experimental results
show the map of the root gene position when the pre-
cision of initial conditions is specified to 1 and 2. As
the precision of initial conditions is set to 2, the root
gene position in the length of 3 possesses a great per-
centage, which is close to 50%. The similar situation
occurs at the root gene position in the length of 1 when
the precision of initial conditions is specified to 1. It
suggests the dense distribution of the root gene position
in length. Moreover, the permutation and combination
of the common gene positions occur in real trajectories
with the same root gene position.
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1 Introduction
The numerical simulation of computers is an impor-

tant approach for studying dynamical equations. How-
ever, a fundamental issue is that whether the numeri-

cal simulation of computers precisely reflects the char-
acteristic of dynamical equations. On the one hand,
dynamical equations are defined in the continuous real
number field for theoretical research. A real trajectory
consists of true numerical solutions of dynamical equa-
tions. True numerical solutions might possess the in-
finite precision of digit position. On the other hand,
the numerical simulation of computers for dynamical
equations is always a finite limit on the computational
precision. In comparison with the continuous space of
real number, the space of the numerical simulation of
computers is discrete for dynamical equations. As a re-
sult, there exists a widening breach between the contin-
uous space of real number and the finite computational
precision of computers.
Some dynamical equations such as the logistic map

demonstrate a complex dynamical behavior and finally
route to chaos with time in the continuous space of real
number. Report [Tan and Chia, 1993] studied numer-
ically the properties of the logistic map with a single
sectional discontinuity. Besides, Tan et al. [Tan and
Chia, 1995] also showed the bifurcation diagram in
the linear-logistic map. The chaotic systems present
the properties such as the sensitivity to initial con-
ditions and the ergodicity. Moreover, the long-term
prediction is mostly impossible [Ditto and Munakata,
1995]. However, the finite computational precision has
a strong effect on the dynamical behavior of chaos. In
other words, the property of dynamical equations has
the precision-dependent behavior.
Numerical results for the discrete logistic map show

that there exists a geometric pattern in the specified in-
terval when convergence is gauged with a finite compu-
tational precision, and also show that this pattern cas-
cades into the period-doubling areas [Bresten and Jung,
2009]. Cang et al. [Cang, Qi and Chen, 2010] reported
a new four-dimensional smooth quadratic autonomous
chaotic system with four-wing hyper-chaotic attractor
and coexistence of two double-wing hyper-chaotic at-
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tractors under different initial conditions, which is in-
vestigated via both numerical simulations and bifurca-
tion analysis. As seen above, period-doubling areas and
attractors of dynamical equations have close links with
the specified precision.
Apart from the precision-dependent behavior, many

researchers focus on the property of numerical orbits
and real trajectories. As we know, real chaotic trajecto-
ries of dynamical equations are nonperiodic in the con-
tinuous space of real number. The numerical simula-
tion of computers is limited to the finite space of real
number. Numerical orbits finally fall into the periodic-
ity.
Ref. [Zhou, 2006] reported that one-dimensional uni-

modal maps may be robustly employed to generate the
maximum-length shift-register sequences with the use
of the limiter controller. The orbit structure of the dis-
crete maps on a finite set is reported [Lanford, 1998].
It is an important problem how to get long periodic se-
quence in order to overcome the dynamical degrada-
tion of chaotic systems [Li, Chen and Mou, 2005]. In
other words, it implies that how to make numerical or-
bits close to real trajectories.
In order to reveal the property of numerical orbits and

real trajectories, a key problem is that how to compute
numerical solutions of dynamical equations. It can be
divided into two types: the floating-point arithmetic
with round-off errors and the computing method of the
specified precision without computational errors.
Report [Blanck, 2005] pointed out that it is possi-

ble to effectively compute the forward orbit of iter-
ated maps contrary to often held believes that rounding
errors and sensitivity on inputs make this impossible.
Curtright et al. [Curtright, Jin and Zachos, 2011] pre-
sented that it is probable to construct approximate solu-
tions to functional evolution equations by using a com-
bination of series and conjugation methods, and rela-
tive errors could be estimated. The functional conjuga-
tion substantially improves the numerical accuracy of
formal series approximations for their continuous iter-
ates. Besides, Blanck [Blanck, 2006] also investigated
that approximations based on dyadic centred intervals
as a means are used to realize exact real arithmetic. It
is shown that the field operations can be implemented
on these approximations with optimal or near optimal
results.
It is obvious that round-off errors have a considerable

influence on the numerical orbits. Oteo et al. [Oteo
and Ros, 2007] reported that the statistics of the largest
double precision error as a function of the map param-
eter is characterized by jumps whose location is deter-
mined by certain boundary crossings in the bifurcation
diagram.
Moreover, Gontar et al. [Gontar and Gutman, 1999]

examined different ways of obtaining iteration se-
quences of the simplest 1-D maps in a particular form
of quasi-continuous orbits specified by their long lami-
nar segments.
Furthermore, Kim et al. [Kim and Park, 1999] pro-

posed a new method based on the modified genetic al-
gorithm to find a modeling function of nonlinear se-
quences. Numerical simulations were performed using
nonlinear sequences generated by Logistic map func-
tion and Henon map function.
As mentioned above, the numerical orbits with round-

off errors are based on approximations by using the
finite computational precision. The approximations
could cunningly conceal the property of true numerical
solutions in real trajectories of dynamical equations.
Crutchfield [Crutchfield, 2012] pointed out that for

an organism order is the distillation of regularities ab-
stracted from observations, and an organism’s very
form is a functional manifestation of its ancestor’s evo-
lutionary and its own developmental memories. The
property of the logistic map with scalable precision
is reported [Liu, Zhang, Song, Buza, Yang and Guo,
2012]. It seemed that the real chaotic trajectories of the
logistic map are an organism’s very form. Each cur-
rent true numerical solution in a real trajectory inher-
its its ancestor’s gene and develops own characteristic
with evolution. The ancestor’s gene can be explained
as the invariable inherited genetic position of each true
numerical solution in the real trajectory of the logis-
tic map, which is referred to the root gene position.
Own developmental memories could be described as
the difference from each other, which is mentioned as
the individual gene position. It is interesting that the
round-off error is hiding some important facts.
The iterative method with lower positions in absolute

precision is the computing method of the specified pre-
cision without computational errors, which allows us to
observe the property of real trajectories of dynamical
equations. Besides, the basic structure of real trajecto-
ries of the logistic map is reported, which includes the
root gene position, the common gene position and the
individual gene position [Liu, Zhang and Song, 2014].
In this paper, the property of the root gene position of

the logistic map is introduced. The maximum number
of the root gene position is proved when the length of
the root gene position is equal to 1. The map of the
root gene position is plotted when the precision of ini-
tial conditions of the logistic map is specified to 1 and
2. Moreover, the major length distribution of the root
gene position is presented. To the best of my knowl-
edge, the inherited genetic property of real trajectories
of the logistic map as the root gene position is reported
in detail for the first time.
The rest of this paper is organized as following. Sec-

tion 2 gives some definitions and the lemma which will
be used in the next section. Section 3 introduces the
property of numerical trajectories with round-off er-
rors. The property of the root gene position is presented
in Section 4. The last section summarizes this work.

2 Preliminary Knowledge
In this section, some definitions and the lemma will

be given before the property of the root gene position
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is described.

Definition 1. A real number τ can be for-
mulated as τ = r0.r1r2 · · · ri · · · rn, ri ∈
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

When rn ̸= 0, n represents the precision of τ .
Definition 1 is utilized to introduce the lower positions

of the true numerical solution and demonstrate the lo-
cation of the root gene position in the real trajectory.

Definition 2. Assume that z(γ) represents a normal-
ized form of an integer number γ, i.e.,

z(γ) = zγnzγn−1 . . . zγi . . . zγ0 ,

where zγ0 is called the last digit of γ.

Definition 2 is used to distinguish the last digit of in-
teger number in arithmetic.
Assume the sets of integer number Zc = {5} and
Zd = {1, 2, 3, 4, 6, 7, 8, 9}.

Lemma 1. ∀α, β ∈ Zd, let γ = α × β, zγ0 is the last
digit of γ, the following is true:

zγ0 ∈ Zd. (1)

Proof : the results of γ = α × β are summarized in
Table 1. Since the set {2, 4, 6, 8} ⊂ Zd, we can easily
obtain Eq. (1). The proof is thus completed.

3 Numerical Trajectory with Round-off Errors
Floating-point arithmetic in modern computers is by

far the most widely used computational method of im-
plementing real-number arithmetic. In general, com-
puters possess the finite computational precision. In
fact, it is too difficult for computers to simulate a
dynamical equation with absolute precision through
floating-point arithmetic. On the one hand, the preci-
sion of true numerical solutions of the dynamical equa-
tion will be truly very large with time. It is inevitable
to truncate extra digit positions of numerical solutions
with finite computational precision. On the other hand,
the computational precision could make a great impact
on long-term behavior of the dynamical equation. In
other words, the precision-dependent behavior of the
dynamical equation will produce different trajectories
even though same initial conditions are specified.
In order to explain the problem we give examples

for floating-point arithmetic with the specified finite
computational precision. Assume that a computer pos-
sesses the finite computational precision which can be
specified freely by users.
The typical dynamical equation will refer to the logis-

tic map which can be described as
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Figure 1. The numerical trajectory of the logistic map is shown for
x0=0.2 and a=3.95 with the computational precision of 2.

xn+1 = a xn (1− xn), n = 0, 1, 2, · · · (2)

where a represents the control parameter which is a real
number in the interval (3, 4). xn is the numerical solu-
tion of the n-th iteration which belongs in the interval
(0, 1). x0 stands for an initial value of xn.
Initial conditions of the logistic map are given as
x0 = 0.2 and a = 3.95. The computational precision
of the computer is set to 2. The computing procedure
is shown as following.
x1 = a x0 (1−x0) = 3.95×0.2× (1−0.2) = 0.632.

The precision of x1 is equal to 3. The last digit position
exceeds the computational precision of the computer.
Therefore, the lowest digit position will be truncated.
Thus, x1 = 0.63.
x2 = a x1 (1 − x1) = 3.95 × 0.63 × (1 − 0.63) =
0.920745. The precision of x2 is equal to 6. The lowest
four digit positions will be truncated. Thus, x2 = 0.92.
Figure 1 shows the numerical trajectory of the logistic

map with x0 = 0.2 and a = 3.95 when the computa-
tional precision is specified to 2.
From Figure 1, we can see that the numerical trajec-

tory possesses two parts: the delay part and the cycle
part. The length of the delay part is equal to 15, which
ranges from x1 = 0.63 to x15 = 0.25. The length of
the cycle part is equal to 2, which includes x16 = 0.74
and x17 = 0.75. The period of the cycle part is very
short.
We increase the computational precision of the

computer in order to further observe the precision-
dependent behavior.
Assume that initial conditions of the logistic map are

given as x0 = 0.215 and a = 3.95. The value of the
control parameter a does not change. The computa-
tional precision of the computer will increase to 3. The
computing procedure is listed as follows.
x1 = a x0 (1− x0) = 3.95× 0.215× (1− 0.215) =
0.66666125. The precision of x1 is equal to 8. Lower
five digit positions exceed the computational precision.
Therefore, 0.00066125 will be truncated as round-off
errors. Thus, x1 = 0.666.
x2 = a x1 (1− x1) = 3.95× 0.666× (1− 0.666) =
0.8786538. The precision of x2 is equal to 7. There-
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Table 1. The results of γ = α× β and the set S of zγ0 .

α�β 1 2 3 4 6 7 8 9

1 1× 1 = 1 1× 2 = 2 1× 3 = 3 1× 4 = 4 1× 6 = 6 1× 7 = 7 1× 8 = 8 1× 9 = 9

2 2× 1 = 2 2× 2 = 4 2× 3 = 6 2× 4 = 8 2× 6 = 12 2× 7 = 14 2× 8 = 16 2× 9 = 18

3 3× 1 = 3 3× 2 = 6 3× 3 = 9 3× 4 = 12 3× 6 = 18 3× 7 = 21 3× 8 = 24 3× 9 = 27

4 4× 1 = 4 4× 2 = 8 4× 3 = 12 4× 4 = 16 4× 6 = 24 4× 7 = 28 4× 8 = 32 4× 9 = 36

6 6× 1 = 6 6× 2 = 12 6× 3 = 18 6× 4 = 24 6× 6 = 36 6× 7 = 42 6× 8 = 48 6× 9 = 54

7 7× 1 = 7 7× 2 = 14 7× 3 = 21 7× 4 = 28 7× 6 = 42 7× 7 = 49 7× 8 = 56 7× 9 = 63

8 8× 1 = 8 8× 2 = 16 8× 3 = 24 8× 4 = 32 8× 6 = 48 8× 7 = 56 8× 8 = 64 8× 9 = 72

9 9× 1 = 9 9× 2 = 18 9× 3 = 27 9× 4 = 36 9× 6 = 54 9× 7 = 63 9× 8 = 72 9× 9 = 81

S Zd {2, 4, 6, 8} Zd {2, 4, 6, 8} {2, 4, 6, 8} Zd {2, 4, 6, 8} Zd

0.243

0.726

0.785

0 666.

0.878

0.423
0.964

0.137

0.467

0.983

0 66.0

Figure 2. The numerical trajectory of the logistic map is shown for
x0=0.215 and a=3.95 with the computational precision of 3.

fore, 0.0006538 will be truncated as round-off errors.
Thus, x2 = 0.878.
Figure 2 shows the numerical trajectory of the logistic

map with x0 = 0.215 and a = 3.95 when the compu-
tational precision is set to 3.
The numerical trajectory does not possess the delay

part for x0 = 0.215 and a = 3.95. The length of the
cycle part is equal to 11. Apparently, the length of the
cycle part becomes larger than before.
We increase the computational precision to 6 for ob-

serving the precision-dependent behavior with round-
off errors. Assume that initial conditions are given as
x0 = 0.0251 and a = 3.9. The computing procedure is
listed as follows.
x1 = a x0 (1−x0) = 3.9× 0.0251× (1− 0.0251) =
0.095432961. The precision of x1 is equal to 9. Lower
three digit positions exceed the computational preci-
sion. Therefore, 0.000000961 will be truncated as
round-off errors. Thus, x1 = 0.095432.
x2 = a x1 (1 − x1) = 3.9 × 0.095432 × (1 −
0.095432) = 0.3366664601664. The precision of x2

is equal to 13. Therefore, 0.0000004601664 will be
truncated as round-off errors. Thus, x2 = 0.336666.
Figure 3 shows the numerical trajectory of the logistic

map with x0 = 0.0251 and a = 3.9 when the compu-
tational precision is set to 6.
From Figure 3 we can see that the length of the cycle

part is equal to 8 for the computational precision of 6.
The initial conditions of {x0 = 0.215, a = 3.95} and
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Figure 3. The numerical trajectory of the logistic map is shown for
x0=0.0251 and a=3.9 with the computational precision of 6.

{x0 = 0.0251, a = 3.9} do not include the delay part.
The length of the period is not remarkably increasing
with the enhancing computational precision.
As mentioned above, the enhancing computational

precision uncertainly leads to increasing the length of
the cycle part. Besides, round-off errors are completely
out of control. In fact, the finite computational preci-
sion of computers and the round-off error have a malign
effect on dynamical equations. Some characteristics of
dynamical equations could be conceal by round-off er-
rors.
The simulated numerical trajectories might be differ-

ent from the real trajectories. We take an example to
explain the problem. Assume that initial conditions of
the logistic map are given as x0 = 0.2 and a = 3.95.
We use the computational precision of 2 and 3 for ob-
serving the deviation of trajectories.
Figure 4 shows the simulated numerical trajectories

for x0 = 0.2 and a = 3.95 with the computational pre-
cision of 2 and 3 in comparison with the real trajectory.
In Figure 4, IterPrecision represents the computa-

tional precision of the computer with the floating-point
arithmetic. The true numerical solution is computed
with absolute precision. In other words, a real trajec-
tory consists of true numerical solutions which do not
include any computational error.
From Figure 4 we can see that the simulated numeri-

cal trajectories are very close to the real trajectory at the
first few iterations. Starting from the seventh iteration,
the simulated numerical trajectories gradually deviate
from the real trajectory. The accumulated round-off er-
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Figure 4. Trajectories include the real trajectory, the simulated nu-
merical trajectories with the computational precision of 2 and 3 when
the initial conditions are given as x0=0.2 and a=3.95.

rors step by step expand with the increasing number of
iterations. Moreover, the simulated numerical trajec-
tories are different from each other even though same
initial conditions are given.
The complex dynamical behavior is dependent on the

round-off error or otherwise. The question is too diffi-
cult for the numerical simulation of computers. As so
far, there has not any computer with infinite computa-
tional precision for simulating continuous trajectories.
Many research works are presented to devote more ap-
proaches to this issues. In the next section the root gene
position is utilized to explore the property of real tra-
jectories.

4 Property of Root Gene Positions
Real trajectories of the logistic map naturally possess

the basic structure which includes the root gene posi-
tion, the common gene position and the individual gene
position. The individual gene position represents the
ergodicity and randomness of the dynamical equation.
The common gene position can divide the trajectory
into several groups. The root gene position is able to
identify a real trajectory. In other words, every true
numerical solution in the real trajectory possesses the
same root gene position which locates in the lower digit
positions.

4.1 Two Types of Real Trajectories
In order to observe basic structure of the logistic map,

the iterative method with lower positions will be uti-
lized to get lower positions of true numerical solutions
in the real trajectory.
The logistic map can be rewritten as

xn = f(a, xn−1), n = 1, 2, · · · (3)

Assume that pn is a positive integer. The lower pn
positions of xn are described as

0.r1r2 · · · ri+1ri+2 · · · ri+pn︸ ︷︷ ︸
lower pn positions

The iterative method with lower pn positions is de-
scribed as following.

Step 1: computing the dynamical equation xl
n =

f(a, xn−1) in absolute accuracy;
Step 2: if the total number of positions of xl

n is less
than or equal to pn, xl

n will be returned for the
next iteration; otherwise, the lower pn positions
will be converted into 0.ri+1ri+2 · · · ri+pn for the
next iteration.

Assume that initial conditions are given as x0 = 0.3,
a = 3.8 and pn = 10. We use the iterative method
with lower pn positions to get the real trajectory of the
logistic map. The computing procedure is shown as
follows.
xl
1 = ax0(1− x0) = 3.8× 0.3× (1− 0.3) = 0.798.

The precision of xl
1 is equal to 3. It is less than pn =

10. Thus, x1 = 0.798.
xl
2 = ax1(1 − x1) = 3.8 × 0.798 × (1 − 0.798) =

0.6125448.
The precision of xl

2 is equal to 7. It is less than pn =
10. Thus, x2 = 0.6125448.
xl
3 = ax2(1 − x2) = 3.8 × 0.6125448 × (1 −

0.6125448) = 0.901867938373248.
The precision of xl

3 is equal to 15. It is greater than
pn = 10. The lower ten positions starting from the last
position will be converted into 0.ri+1ri+2 · · · ri+pn as

0.90186 7938373248︸ ︷︷ ︸
lower 10 positions

Thus, x3 = 0.7938373248.
xl
4 = ax3(1 − x3) = 3.8 × 0.7938373248 × (1 −

0.7938373248) = 0.621906580906641358848.
The precision of xl

4 is equal to 21. It is greater than
pn = 10. The lower ten positions will be converted
into 0.ri+1ri+2 · · · ri+pn as

0.62190658090 6641358848︸ ︷︷ ︸
lower 10 positions

Thus, x4 = 0.6641358848.
Lower ten positions of true numerical solutions in

the real trajectory are observed by using the iterative
method with lower positions.
Figure 5 shows the real trajectory of the logistic map

for x0 = 0.3 and a = 3.8 with lower ten positions of
true numerical solutions.
x1 = 0.798 is the delay part of the real trajectory.

Apart from x1, the real trajectory exhibits the natural
structure with starting from x2. Each true numerical so-
lution has the same root gene positions of “48”, which
are located in the lowest two positions of true numer-
ical solutions. The common gene positions are “448”,
“248”, “848” and “048”.
In Figure 5, apart from the root gene position and the

common gene position, it is obvious that every true nu-
merical solution is diverging from each other, which is
called as the divergence trajectory.
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Figure 5. The real trajectory of the logistic map is shown for
x0=0.3 and a=3.8 with lower ten positions of true numerical so-
lutions.

Assume that initial conditions are given as x0 = 0.5,
a = 3.9. The real trajectory of the logistic map is
shown as following.
x1 = 0.975.
x2 = 0.0950625.
x3 = 0.335499922265625.
x4 = 0.8694649252589998712310791015625.
In the next true numerical solution we give the upper

three positions and the lower ten positions, because the
precision is too large.
x5 = 0.442 · · · 9228515625.
x6 = 0.962 · · · 6103515625.
x7 = 0.141 · · · 9853515625.
x8 = 0.475 · · · 7353515625.
x9 = 0.972 · · · 2353515625.
x10 = 0.104 · · · 2353515625.
The lower ten positions are rewritten as follows.

x2 = 0.0950625
x3 = 0. · · · 9922265625
x4 = 0. · · · 0791015625
x5 = 0. · · · 9228515625
x6 = 0. · · · 6103515625
x7 = 0. · · · 9853515625
x8 = 0. · · · 7353515625
x9 = 0. · · · 2353515625
x10 = 0. · · · 2353515625

The lower ten positions of the true numerical solution
are converging on “2353515625”, which is called as the
convergence trajectory.

4.2 Property in Precision 1
The root gene positions can identify a real trajectory,

since each true numerical solution in the real trajectory
inherits the same characteristic from the previous itera-
tion. It is an interesting problem how many trajectories
are there in the specified space?
The precision of initial conditions of the logistic

map are set to 1. The lowest position of the initial
value x0 and the control parameter a belongs to the
set of {1, 2, 3, 4, 6, 7, 8, 9}, i.e., Zd. In other words,
values of the control parameter of a are appointed
in the set of {3.1, 3.2, 3.3, 3.4, 3.6, 3.7, 3.8, 3.9}.
Values of x0 are specified in the set of
{0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9}.

Figure 6. The map of the root gene position is shown for the preci-
sion of 1 with initial conditions.

Note that each initial condition can go along with the
real trajectory which possesses the root gene position.
The initial conditions can be described as the form of
(a, x0). The total number of real trajectories is equal
to 64 (8 × 8) when the precision of initial conditions
is specified to 1, which include (a = 3.1, x0 = 0.1),
(a = 3.1, x0 = 0.2), · · · , (a = 3.9, x0 = 0.1) and so
on. Figure 6 shows the map of the root gene positions
for the precision of 1 with initial conditions.
The length of root gene positions ranges from 1 to 3.

The total number of the root gene position is equal to
6 when the length of the root gene position is equal
to 2, i.e., “03”, “28”, “29”, “32”, “36” and “48”. The
number of the root gene position is the minimum with
the length of 3, i.e., “027” and “504”.
Note that the total number of the root gene position is

equal to 8 when the length of the root gene position is
equal to 1, i.e., “1”, “2”, “3”, “4”, “6”, “7”, “8” and
“9”. From Lemma 1 we can deduce that the maximum
number of root gene positions is equal to 8 when the
length of the root gene position is equal to 1. In other
words, the maximum number of the root gene position
in the length of 1 is equal to the element number of the
set Zd.

4.3 Property in Precision 2
In order to further explore the property of the

root gene position, the precision of initial condi-
tions of the logistic map is set to 2. The lowest
position of the initial value x0 and the control pa-
rameter a belongs to the set of {1, 2, 3, 4, 6, 7, 8, 9}.
Values of the control parameter of a will vary
in the set of {3.01, 3.02, 3.03, 3.04, · · · , 3.99}.
Values of x0 are specified in the set of
{0.01, 0.02, 0.03, 0.04, 0.06, · · · , 0.99}.
The total number of real trajectories is equal to 7744

(88 × 88) when the precision of initial conditions is
specified to 2. The total number of root gene positions
is equal to 181. The length of root gene positions varies
from 1 to 6. Figure 7 shows the map of the root gene
positions for the precision of 2 with initial conditions.
The maximum length of the root gene position ex-

pands to 6. In comparison with the precision of 1, the
number of root gene positions in precision 2 is remark-
ably increasing.
The total number of root gene positions is equal

to 60 when the length of root gene positions is
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Figure 7. The map of the root gene position is shown for the preci-
sion of 2 with initial conditions.
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Figure 8. Statistical distribution of the root gene position is plotted
by the length.

equal to 2. Note that each element in the set
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} includes six root gene posi-
tions. For example, the first position of the root gene
position is equal to 0 which includes “01”, “03”, “04”,
“07”, “08” and “09”. The first position of the root gene
position is equal to 5 which includes “51”, “52”, “53”,
“56”, “57” and “59”.
Author does not know the maximum number of root

gene positions with the length of 2, because it is diffi-
cult for author to deduce the result by using the number
theory. Apart from this, it is unclear whether the pre-
cision 3 or more of initial conditions have some effect
on the maximum number of the root gene position or
not. In other words, it is unknown how to prove it by
using the theoretical methodology. Moreover, the total
number of real trajectories will arrive to 788544 (888
× 888) as the precision of initial conditions is specified
to 3.
The major length distribution of the root gene position

represents the maximum percent of the length distribu-
tion with the specified precision of initial conditions.
Figure 8 shows the statistical distribution of the root
gene position by the length.
In Figure 8, the number of the root gene position with

the length of 1 and 2 is an overwhelming percentage
when the precision of initial conditions is specified to
1. pInitCon represents the given precision of initial
conditions. It is obvious that the major length distri-

Table 2. The common gene position with the same root gene posi-
tion of “12” in the real trajectories is shown.

Common gene position (a, x0)

{112, 512, 312, 912} {(3.52, 0.16)}

{312, 512, 912, 712} {(3.27, 0.38), (3.27, 0.34)}

{112, 712, 912, 312} {(3.02, 0.09), (3.02, 0.41)}

{112, 912, 512, 712} {(3.77, 0.62), (3.77, 0.88)}

Table 3. The common gene position with the same root gene posi-
tion of “4” in the real trajectories is shown.

Common gene position (a, x0)

{24, 44, 84, 64} {(3.1, 0.4)}

{24, 04, 64, 84} {(3.46, 0.07)}

{04, 24, 64, 44} {(3.11, 0.48)}

bution of the root gene position locates in length of 1
for pInitCon = 1, which arrives to 50%.
Moreover, the number with the length of 2 and 3 pos-

sesses a great percentage for pInitCon = 2. The major
length distribution of the root gene position locates in
length of 3, which is close to 50%.
As seen above, the major length distribution suggests

that the number of the root gene position is remarkable
dense in the length.

4.4 Common Gene Position in Trajectories
In the numerical simulation of the logistic map, the in-

teresting phenomenon is that some real trajectories pos-
sess different common gene positions even though they
possess the same root gene position. Table 2 shows the
common gene position with the same root gene posi-
tion of “12”.
The initial conditions of (a = 3.27, x0 = 0.38) and
(a = 3.27, x0 = 0.34) have the same root gene po-
sition and common gene position, i.e., the common
gene positions “312”, “512”, “912” and “712” with the
same root gene position “12”. The initial condition of
(a = 3.52, x0 = 0.16) has the root gene position of
“12”. However, the common gene position is “112”,
“512”, “312” and “912”. They have the same common
gene positions of “512”, “312” and “912”, and have the
different ones of “112” and “712”.
The similar situations happen for (a = 3.02, x0 =
0.09) and so on. Table 3 shows the common gene po-
sition with the same root gene position of “4”.
In comparison with Table 2, the digit of the common

gene position belongs to the set {2, 4, 6, 8, 0} in Table
3. For example, the initial condition of (a = 3.46, x0 =
0.07) has the root gene position of “4”, the common
gene positions “24”, “04”, “64” and “84”. In compar-
ison with (a = 3.46, x0 = 0.07), the common gene
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position with the initial condition of (a = 3.11, x0 =
0.48) has the same of “04”, “24” and “64”, and has the
different of “44”.
As seen above, the permutation and combination of

common gene positions occur in real trajectories with
the same root gene position.

5 Discussion and Conclusions
This paper tries to explore the property of real tra-

jectories of the logistic map. The property of the root
gene position of true numerical solutions is presented.
The major length distribution of the root gene position
will change with the specified precision of initial con-
ditions. The length of root gene positions is increasing
when the precision of initial conditions enhances. The
permutation and combination of the common gene po-
sitions could happen with the same root gene position.
Moreover, the root gene position can precisely iden-

tify a real trajectory against the numerical trajectories
which could be computed by using the floating-point
arithmetic with round-off errors. The map of the root
gene position might reveal the property of real trajec-
tories of the logistic map and the precision-dependent
behavior of dynamical equations.
The topic about the root gene position still remains

open. There are many problems to be resolved. For
example, it is important how does the major length dis-
tribution of the root gene position change with the spec-
ified precision of initial conditions? The major length
distribution implies the dense distribution of real trajec-
tories. It is the future work that the maximum number
of root gene positions in length will be revealed by us-
ing number theory.
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