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Abstract— A causal realization of an inverse system can be
unstable and an anti-casual realization is to deal with this
problem to provide a numerically stable procedure to inverse
the system and compute its input signal. In this paper, we
consider the anti-causal realization of the inverse of discrete time
linear periodic systems obtained by an outer-inner factorization
approach. It is shown that the outer-inner factorization can result
in a stable anti-causal realization. It also derives a formula of
the inversion error, which can show that the inversion error is
inevitable due to the anti-causal reversal operation.

I. INTRODUCTION

Inverse systems have important applications in signal pro-
cessing, control, filtering and data coding, which may also
be called equalization or deconvolution systems in different
circumstance. The problem of inverting a linear periodic time-
varying (LPTV) system has attracted considerable attentions,
see for example, [1]-[5]. The anti-causal realization of the
inverse system is to deal with the stability problem in the
inverse system, which was earlier studied and applied to
multirate filter banks and its implementation [6], [7]. In these
works, a state space representation is employed to induce the
anti-causal inverse.

The inner-outer factorization is a useful technique to deal
with the system inverse problem. In [8], a method is proposed
to construct optimal causal approximate inverse for discrete
time single-input single-output (SISO) causal periodic filters
in the presence of measurement noise. The method is based
on an inner-outer factorization of the plant rational matrix.
In [9]-[11], van der Veen and Dewilde present an inner
outer factorization method for linear discrete time-varying
systems. Instead of factorizing the transfer function matrix,
this method factorizes the system time domain operator. It has
an computational advantage that all computations are done by
using the state space realization.

While [9] presents the concept and theory necessary for the
development of the inner-outer factorization method for linear
time varying systems, it does not provide explicit stability
analysis of the factorized systems.

In this paper, we will analyze the stability of the anti-causal
realization of the periodic inverse system which is obtained
from the outer-inner factorization of the inverse system in

the state space realization. A periodic Lyapunov equation is
introduced to the stability analysis. We will further examine
the error introduced by using the anti-causal realization of the
system inverse to compute the system input signal. Such an
error analysis has not been presented in the existing literature.

The rest of the paper is organized as follows. Section II
presents necessary preliminaries. The anti-causal realization
of the inverse system is presented in III. Section IV analyzes
the stability of the inner factor and its anti-causal inverse. And
the system inversion error is analyzed in section V. Section
VI illustrates the system error by examples before conclusion
in section VII.

II. PRELIMINARIES

The following notations are used in this paper. I denotes
the identity matrix of an appropriate dimension, ∗ denotes
the hermitian conjugate, Rm×n denotes the real space of
dimension (m × n). The factorization of an operator T into
T = ToV is called an outer-inner factorization, where To is
the left outer factor and V is an isometry satisfying V V ∗ = I .
The matrix V is inner if and only if T ∗ is full column rank.

Let u and y be the input and output of the system T such
that y = uT . The idealized inverse problem is to find the
inverse system T−1 of T , such that the input u is computed
and obtained from the measurement of y, i.e. u = yT−1.
This idealized case is often practically not feasible since there
is no guarantee that T−1 is a stable system. The anti-causal
realization of the inverse is a method for stably computing the
input u and its restriction is that u should be of finite length.

The state realization of a SISO LPTV causal system T is
written as:

xk+1 = xkAk + ukBk,
yk = xkCk + ukDk,

(1)

where uk ∈ R1×1 is the input and yk ∈ R1×1 is the output. If
the state row vector xk has a time varying dimension R1×bk ,
then the dimensions of Ak, Bk, Ck and Dk are respectively
Rbk×bk+1 , R1×bk+1 , Rbk×1 and R1×1. In this paper, we con-
sider the constant state dimension R1×n. For the N-periodic
time varying system, the state matrices satisfy Ak+N = Ak,
Bk+N = Bk, Ck+N = Ck, and Dk+N = Dk. It follows from



the state equation (1) that entries of the system operator T are
given by

Ti,j =
{

Di, i = j,
BiAi+1 · · ·Aj−1Cj , i < j.

(2)

The state realization of an N-periodic LPTV anti-causal
system T

′
is written as:

x
′
k−1 = x

′
kA

′
k + u

′
kB

′
k,

y
′
k = x

′
kC

′
k + u

′
kD

′
k.

(3)

The dimensions of all the matrices in the realization must be
compatible. If the input u

′
k ∈ R1×1, the output y

′
k ∈ R1×1

and the state row vector x
′
k has a time varying dimension

R1×b
′
k , the dimensions of Ak, Bk, Ck and Dk are respectively

Rb
′
k×b

′
k−1 , R1×b

′
k+1 , Rb

′
k×1 and R1×1. The state matrices are

also in period of N and entries of the system operator T
′

are
given by

T
′
i,j =

{
D
′
i, i = j,

B
′
iA

′
i−1 · · ·A

′
j+1C

′
j , i > j.

(4)

Definition 1: The causal system T with the state equa-
tion (1) is stable if all the eigenvalues of the lifted matrix
Ā = Ak · · ·Ak+N−1 are inside the unit disk, or the greatest
eigenvalue of Ā is small than unity, i.e.

lA = max
i

λi(Ā) < 1,

where λi(Ā) for i = 0, 1, · · · , N − 1 are the eigenvalues of
the lifted matrix Ā.

The stability of the anti-causal system T
′

with state matrices
{A′

k, B
′
k, C

′
k, D

′
k} is defined as follows:

Definition 2: The anti-causal realization system T
′

is stable
if

lA′ = max
i

λi(Ā
′
) < 1,

where Ā
′

= A
′
k+N−1 · · ·A

′
k is the lifted matrix, and λi(Ā

′
)

for i = 0, 1, · · · , N − 1 are the eigenvalues of Ā
′
.

In this paper, we consider the stable causal-anticausal re-
alization of the inverse of the causal SISO LPTV system T
with the state equation (1) and entries represented in (2). It
is assume that T is a stable system. In general and following
from the method in [9], the system T can be factorized into
a left outer factor To and the inner factor V , such that

T = ToV. (5)

The above outer-inner factorization is computed by the back-
ward recursive LQ factorization

[
Dk BkYk+1

Ck AkYk+1

]
=

[
Do,k 0 0
Co,k Yk 0

]
Wk, (6)

where the initial starting point Yk+1 is obtained by the the
periodic Riccati equation Mk+1 = Yk+1Y

∗
k+1, which is written

as

Mk = AkMk+1A
∗
k + CkC∗k

−[AkMk+1B
∗
k + CkD∗

k](DkD∗
k + BkMk+1B

∗
k)†

×[DkC∗k + BkMk+1A
∗
k].

The numerical solution of the periodic Riccati equation is pre-
sented in [13]. The partitioning of the outer-inner factorization
is such that Do,k and Yk have full column rank, and Wk is
unitary matrix with partitioning in the form

Wk =




Dv,k Bv,k

Cv,k Av,k

d d


 ,

where d can be any matrix.
Since Wk is a unitary matrix, we can obtain the following

equations.

Av,kA∗v,k + Cv,kC∗v,k = I, Av,kB∗
v,k + Cv,kD∗

v,k = 0,

Bv,kA∗v,k + Dv,kC∗v,k = 0, Bv,kB∗
v,k + Dv,kD∗

v,k = I.
(7)

The state-space realization of the outer factor To is given
by {Ak,Bk,Co,k,Do,k}. And the realization of the inner factor
V is given by {Av,k, Bv,k, Cv,k, Dv,k}. The outer-inner fac-
torization as given in the above will be the basis for the stable
anti-causal realization of the inverse system of T .

III. ANTI-CAUSAL REALIZATION OF THE INVERSE SYSTEM

We now derive the stable anti-causal realization of the
inverse system of the causal stable LPTV system T . It is noted
that the anti-casual realization can only permit practically finite
step of computation and we assume that the number of the
input data in u is L + 1. Thus the input sequence of u is a
collection of uk for 0 ≤ k ≤ L, as follows.

u =
[

u0 u1 u2 · · · uL

]
.

Mathematically, the inverse of the transfer operator T is a
combination of the inverse of the inner factor and the inverse
of the outer factor, resulting in

û = yV −1T−1
o ,

= uToV V −1T−1
o .

However, the direct casual inverse V −1 of the inner factor V
is an unstable system and practically unfeasible, which will be
shown in the next section. In real computation, the unstable
causal factor of the inverse system can be realized anti-causally
to deal with the computational divergence problem. A result
on the anti-causal realization is stated in the following.

Theorem 1: The anti-causal realization of the inverse of
the inner factor is V̂ = V ∗, where V ∗ is anti-causal and
is the Hermitian conjugates V with a state space realization
{A∗v,k, C∗v,k, B∗

v,k, D∗
v,k}.

Proof: The casual realization of the N-periodic inner factor
can be rewritten into an operator form by assembling the state
matrices {Av,k, Bv,k, Cv,k, Dv,k} as diagonal operators:

Av =




. . . 0
Av,k

0
. . .


 Cv =




. . . 0
Cv,k

0
. . .




Bv =




. . . 0
Bv,k

0
. . .


 Dv =




. . . 0
Dv,k

0
. . .






Hence, the transfer function of the inner factor V is given as

V (z) = Dv + Bvz(I −Avz)−1Cv,

and the transfer function of the anti-causal realization of the
inverse of the inner factor is shown as

V ∗(z) = D∗
v + C∗v (I − z∗)A∗v)−1z∗B∗

v .

In view of (7), we can obtain DvD∗
v = I − BvB∗

v , CvD∗
v =

−AvB∗
v , DvC∗v = −BvA∗v , and AvA∗v + CvC∗v = I . Using

these, we have

V (z)V ∗(z)
= [Dv + Bvz(I −Avz)−1Cv][D∗

v + C∗v (I − z∗A∗v)−1z∗B∗
v ]

= DvD∗
v + DvC∗v (I − z∗A∗v)−1z∗B∗

v

+Bvz(I −Avz)−1CvD∗
v

+Bvz(I −Avz)−1CvC∗v (I − z∗A∗v)−1z∗B∗
v

= DvD∗
v −Bvz(I −Avz)−1AvB∗

v

−BvA∗v(I − z∗A∗v)−1z∗B∗
v

+Bvz(I −Avz)−1CvC∗v (I − z∗A∗v)−1z∗B∗
v

= DvD∗
v + Bvz(I −Avz)−1[−Avz(I − z∗A∗v)

−(I −Avz)z∗A∗v + CvC∗v ](I − z∗A∗v)−1z∗B∗
v

= DvD∗
v + Bvz(I −Avz)−1(I −Avz)

(I − z∗A∗v)(I − z∗A∗v)−1z∗B∗
v

= I

Hence, V ∗ with the state matrices {A∗v,k, C∗v,k, B∗
v,k, D∗

v,k} is
the anti-causal inverse of V . 2

In the rest of this paper, we use the notations V̂ and T̂o

as the anti-casual inverse of the inner factor and the causal
inverse of the outer factor, respectively.

With u being the input to the LPTV system T and with the
anti-casual realization of the inverse system, the output û the
inverse system is written as

û = uToV V̂ T̂o

We define the error of the inverse system as follows.
Definition 3: The system error is defined as the difference

of the the reconstructed signal (output signal from the inverse
system) and the input signal, that is,

e = û− u.

IV. STABILITY ANALYSIS OF THE INNER FACTOR

The stability of an LPTV system can be examined by using
the periodic Lyapunov equation technique presented in [12].
The following lemma is deduced from [12] for the stability
analysis of the LPTV inverse system.

Lemma 1: The N-periodic LPTV system T in the form (1)
is stable if and only if there exists an N-periodic system matrix
Qk ∈ Rn×n with Qk = Q∗

k ≥ 0 and Qk+N = Qk for k =
0, 1, · · · , N − 1 such that the following periodic Lyapunov
equation is satisfied:

AkQk+1A
∗
k + CkC∗k −Qk = 0, k = 0, 1, · · · , N − 1. (8)

2

The existence of Qk = Q∗
k ≥ 0 implies that the limit

lim
M→∞

M∑

j=0

AkAk+1 · · ·Ak+j−1Ck+jC
∗
k+jA

∗
k+j−1 · · ·A∗k+1A

∗
k

exists as M approaches infinity. Further more, it implies that

lA = max
i

λi(Ā) < 1,

hence the system (1) is stable.
Given T with the state-space realization (1), the left-outer-

inner factorization is computed in (6), where Wk is an unitary
matrix yielding (7). Thus, we have

Cv,kC∗v,k + Av,kA∗v,k = I. (9)

It is clear that (9) is exactly the same as (8) with Qk = I , for
k = 0, 1, · · · , N − 1. Thus Qk = I , for k = 0, 1, · · · , N − 1,
are solutions for (8), resulting in

lAv = max
i

λi(Āv) < 1,

where Āv = Av,k · · ·Av,k+N−1 is the lifted state matrix
for the inner part. From the stability of causal system in
Definition 1, we can conclude that the inner factor with state
realization {Av,k, Bv,k, Cv,k, Dv,k} is stable. This proves that
the inner factor derived by the outer-inner factorization is
stable. The stability of the inner factor derived by the inner-
outer factorization in [9] can be checked similarly. And it
can be proved that the inner factor derived by the inner-outer
factorization is also stable.

The inverse of the inner factor is anti-causally realized and
has the state matrices {A∗v,k, C∗v,k, B∗

v,k, D∗
v,k}. The existence

of Qk = Q∗
k = I ≥ 0 also implies that

lA∗v = max
i

λi(Ā∗v) < 1,

where Ā∗v = A∗v,k+N−1 · · ·A∗v,k is the lifted state matrix for
the anti-causal inverse of the inner part. Hence, we can make
the following statement based on the stability of the anti-casual
system defined in Definition 2.

Theorem 2: The anti-causal inverse system V̂ = V ∗ of the
inner factor V is stable. 2

The stability of V ∗ implies that the direct inverse V −1 of
the inner factor V is unstable.

V. ERROR ANALYSIS

A. Zero-input and zero-state responses

The output of the LPTV system T is a combination of two
parts, the zero-input response and the zero-state response and
can be written as:

y = x0Tx + uT, (10)

where x0 is the unknown initial state value and Tx is the
system zero-input operator, which can be expressed in terms
of the state matrices as follows

Tx =
[

C0 A0C1 A0A1C2 · · · A0A1 · · ·AL−1CL

]
.



For the system T being factorized into the outer and inner
factors, i.e. T = ToV , we consider the system outputs from
the outer factor and from the inner factor, respectively, in the
following.

1). The output yo from the outer part

yo = xo,0To,x + uTo, (11)

where xo,0 is the unknown initial state value for the outer part,
and To,x is the zero-input operator, which can be written as

To,x =
[

Co,0 Ao,0Co,1 · · · Ao,0Ao,1 · · ·Ao,L−1Co,L

]
.

And To is the outer factor of the transfer operator, which is
given by

To,i,j =
{

Do,i, i = j,
Bo,iAo,i+1 · · ·Ao,j−1Co,j , i < j.

2). The output yo from the outer part is the input to the
inner part, resulting in the following system output

y = xv,0Tv,x + yoV, (12)

where xv,0 is the unknown initial state value for the inner part,
and Tv,x is the zero-input operator of V represented by

Tv,x =
[

Cv,0 Av,0Cv,1 · · · Av,0Av,1 · · ·Av,L−1Cv,L

]
.

And V is the inner factor given by

Vi,j =
{

Dv,i, i = j,
Bv,iAv,i+1 · · ·Av,j−1Cv,j , i < j.

In applying the inverse system with the anti-causal stable
realization to compute the system input u, the output signal y
from the stable LPTV system T will pass through the anti-
causal inverse of the inner factor first. It follows that the
output of the anti-causal inverse inner factor is the input of the
casual inverse outer factor. In the following, we will discuss,
respectively, errors raised in the anti-causal inverse of the inner
factor and in the causal inverse of the outer factor.

B. Error in the anti-causal stable inverse of the inner factor

The state matrices of the anti-causal inverse of the
inner factor are written as {Âv,k, B̂v,k, Ĉv,k, D̂v,k} =
{A∗v,k, C∗v,k, B∗

v,k, D∗
v,k}. The following equations can then be

obtained following from (7):

Av,kÂv,k + Cv,kB̂v,k = I, Av,kĈv,k + Cv,kD̂v,k = 0,

Bv,kÂv,k + Dv,kB̂v,k = 0, Bv,kĈv,k + Dv,kD̂v,k = I.
(13)

The periodic Lyapunov equation with Qk = I can be
formed by the first equation in (13), which is shown as

Av,kQk+1Âv,k + Cv,kB̂v,k −Qk = 0, k = 0, 1, · · · , N. (14)

Recursively using (14), we can get

Qk = Cv,k+1B̂v,k+1 +
∑∞

i=k+2 Av,k+1Av,k+2

· · ·Av,i−1Cv,iB̂v,iÂv,i−1 · · · Âv,k+2Âv,k+1

= I

(15)

We now express the anti-causal inverse output sequence ŷo as

ŷo = x̂v,LT̂v,x + yV̂ , (16)

where x̂v,L is an unknown initial state value of the anti-causal
inverse of the inner part, entries of the zero input response
T̂v,x are

T̂v,x =
[

Âv,LÂv,L−1 · · · Âv,1Ĉv,0 · · · Âv,LĈv,L−1 Ĉv,L

]
,

and entries of V̂ are

V̂i,j =
{

D̂v,i, i = j,

B̂v,iÂv,i−1 · · · Âv,j+1Ĉv,j , i > j.

The error in ŷo is its difference from yo in (11) which is
obtained by using (11) and (12) as follows.

eo = ŷo − yo,

= x̂v,LT̂v,x + xv,0Tv,xV̂ + yo[V V̂ − I].

The inversion computation can yield V V̂ = I for an
infinitely long dada length. But with a real finite length
computation, V ∈ R(L+1)×(L+1), then V V̂ 6= I . With the
expressions of the entries of the matrices V and V̂ , we can
obtain entries of the matrix V V̂ as follows:

For i = j:

[V V̂ ]i,i = Dv,iD̂v,i + Bv,i[Cv,i+1B̂v,i+1 +
∑L

k=i+2 Av,i+1

Av,i+2 · · ·Av,k−1Cv,kB̂v,kÂv,k−1 · · · Âv,i+2Âv,i+1]Ĉv,i.

If L →∞, (15) can be applied, leading to

[V V̂ ]i,i = Dv,iD̂v,i + Bv,iĈv,i = I.

For i > j:

[V V̂ ]i,j = Bv,i[Cv,i+1B̂v,i+1 +
∑L

k=i+2 Av,i+1 · · ·Av,k−1

Cv,kB̂v,kÂv,k−1 · · · Âv,i+1 − I]Âv,i · · · Âv,j+1Ĉv,j .

If L →∞, (15) can be applied, leading to

[V V̂ ]i,j = 0.

For i < j:

[V V̂ ]i,j = Bv,iAv,i+1 · · ·Av,j [Cv,j+1B̂v,j+1 +
∑L

k=j+2 Av,j+1

· · ·Av,k−1Cv,kB̂v,kÂv,k−1 · · · Âv,j+1 − I]Ĉv,j .

If L →∞, (15) can be applied, leading to

[V V̂ ]i,j = 0.

For practically feasible computing with the anti-causal real-
ization in finite L computation steps, V ∈ R(L+1)×(L+1) and
V V̂ 6= I . For small values of i, j, [V V̂ ]i,j is approaching zero
since lAv < 1. And for large values of i, j, [V V̂ ]i,j becomes
non-negligible.

Even thought we force the initial state values of the inner
part and the anti-causal inverse of the inner part, xv,0 and x̂v,L

respectively, to be zero, the system error is not equal to zero.
The error is then propagated to the causal inverse of the outer
factor and can be amplified in this part.



C. Error analysis for causal stable inverse of the outer factor

For the causal stable inverse of the outer factor, the state
matrices are given as

Âo,k = Ao,k − Co,kD−1
o,kBo,k, B̂o,k = D−1

o,kBo,k,

Ĉo,k = −Co,kD−1
o,k, D̂o,k = D−1

o,k,

yielding,

Âo,k + Co,kB̂o,k = Ao,k − Co,kD−1
o,kBo,k + Co,kD−1

o,kBo,k

= Ao,k

(17)
The transfer operator T̂o of the causal inverse of the outer
factor has the entries shown as:

T̂o,i,j =
{

D̂o,i, i = j,

B̂o,iÂo,i+1 · · · Âo,j−1Ĉo,j , i < j.

Hence, it can be shown that for the finite length computing,
ToT̂o = I is satisfied. Entries of ToT̂o satisfy the following
results.

For i = j:
[ToT̂o]i,i = Do,iD̂o,i = I,

For i > j:
[ToT̂o]i,j = 0,

For i < j:

[ToT̂o]i,j = Do,iB̂o,iÂo,i+1 · · · Âo,j−1Ĉo,j

+BiCo,i+1B̂o,i+1Âo,i+2 · · · Âo,j−1Ĉo,j

+Bo,iAo,i+1Co,i+2B̂o,i+2Âo,i+3 · · · Âo,j−1Ĉo,j

...
+Bo,iAo,i+1Ao,i+2 · · ·Ao,j−1Co,jD̂o,j .

Recursively using (17) can result in [ToT̂o]i,j = 0, for i > j.
The output from the inverse of the outer part is written as

û = x̂o,0T̂o,x + (yo + eo)T̂o,

= x̂o,0T̂o,x + xo,0To,xT̂o + uToT̂o + e1T̂o,
(18)

where x̂o,0 is the unknown initial state value for the inverse
of the outer part, and the zero input response T̂o,x can be
expressed as

T̂o,x =
[

Ĉo,0 Âo,0Ĉo,1 · · · Âo,0Âo,1 · · · Âo,L−1Ĉo,L

]
.

The system error e is the difference between the input signal
and the reconstructed signal û, which can be presented as
follows.

e = û− u,

= x̂o,0T̂o,x + xo,0To,xT̂o + u[ToT̂o − I] + e1T̂o,

= x̂o,0T̂o,x + xo,0To,xT̂o + u[ToT̂o − I]
+x̂v,LT̂v,xT̂o + xv,0Tv,xV̂ T̂o + yo[V V̂ − I]T̂o

= x̂o,0T̂o,x + x̂v,LT̂v,xT̂o + xv,0Tv,xV̂ T̂o

+xo,0To,xV V̂ T̂o + uTo[V V̂ − I]T̂o.

If the initial state values of the original and the inverse systems
are all zero, the system error e is simplified to

e = uTo[V V̂ − I]T̂o. (19)

Thus, if we do not consider the system error generated by
the initial state values, the inverse of the outer part, which
is a causal realization, will not generate any additional error
except acting on the error eo from the inverse of the inner
part and passing it to the output. Because of the finite step
computation, V V̂ − I 6= 0, which generates inversion error
within the anti-causal inverse system of the inner factor.

D. Error reduction

In the error analysis of the anti-causal stable inverse of the
inner factor part, we have pointed out that for small i, j values,
[V V̂ ]i,j is approaching zero since lAv < 1, and for large i, j
values, [V V̂ ]i,j become non-negligible. This shows that the
system error is negligible when k is small and then become
larger and larger with k being increased. In order to reduce
the non-negligible system error, zeros can be appended to the
input sequence. Let the number of zeros appended to the input
sequence is K. To show that the inversion error is dependent
on the number of zeros appended to the input sequence, we
examine the last column of V V̂ . For i < (L + 1),

[V V̂ ]i,(L+1) = Bv,i−1Av,i · · ·Av,L[Cv,L+1B̂v,L+1

+
∑K

k=2 Av,L+1 · · ·Av,L+k−1Cv,L+k

B̂v,L+kÂv,L+k−1 · · · ÂL+1 − I]Ĉv,L,
and

[V V̂ ](L+1),(L+1) = Dv,LD̂v,L + Bv,L[Cv,L+1B̂v,L+1

+
∑K

k=2 Av,L+1 · · ·Av,L+k−1Cv,L+k

B̂v,L+kÂv,L+k−1 · · · ÂL+1 − I]Ĉv,L

For a sufficiently large K, it can be shown that

[Cv,L+1B̂v,L+1 +
∑K

k=2 Av,L+1 · · ·Av,L+k−1Cv,L+k

B̂v,L+kÂv,L+k−1 · · · ÂL+1] → I,

[V V̂ ]i,(L+1) → 0 and [V V̂ ](L+1),(L+1) → I , hence the system
error (19) is reduced.

This shows that by appending a sufficiently large number
of zeros in the input sequence will reduce the inversion error
to some sufficiently small value. Practically, number K can
be dependent on the tolerance level of the system error and
the total available computational time.

VI. EXAMPLE

In this section, Example 1 shows the mix-causal inverse
system error with zero initial state values. Example 2 is an
extension of Example 1, showing the reduced system error by
using appended zeros in the input sequence approach.

Example 1. Consider a 2-periodic system with the follow-
ing state matrices:

for k=0,2,4,...

Ak =
[ −0.5 0.548

0 −0.5

]
, Ck =

[
1

0.548

]
,

Bk =
[

1 0.548
]
, Dk = 1;

for k=1,3,5,...

Ak =
[

0.5 2.333
0 0.333

]
, Ck =

[
1
1

]
,

Bk =
[

2.5 2.333
]
, Dk = 1.



The first step is to obtain the inner and outer factors of the
given system using (6). The input signal u is the gaussian
random signal with zero mean and variance of 1 with length
of 1 × 500. The output y of the given 2-periodic system is
obtained by (10). The output of the anti-causal inverse is
given by (16) with y as the input. The reconstructed signal
û is obtained by (18). All the initial state values are set to
be zero. The simulation is done using Matlab program. The
input signal, the reconstructed signal and the system error are
shown in Fig.1.
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Fig. 1. Input-Output and mix-causal inverse system error

Example 2. This example is to show a result of appending
zeros to the input sequence. We append 20 zeros to the last
stage of the input sequence of Example 1 and its effect can be
seen by comparing the system errors in Fig. 1 and Fig. 2. In
Fig.2, it is shown that the error is translated to the extended
time period corresponding to the time period of the appended
zeros. This practically reduces the inversion error within the
time interval of the effective input sequence.

VII. CONCLUSION

In this paper, we have analyzed the stability of the inverse
of the LPTV system with an anti-causal realization. The outer-
inner factorization technique is employed to derive the inverse
system. The stability of the outer factor and the inverse of
the outer factor is analyzed and established using a periodic
Lyapunov equation technique. This is further applied to the
stability analysis of the inner factor and its inverse, which
is realized anti-causally with the state matrices being the
Hermitian conjugate of that of the inner factor. Its stability
is also shown using the Lyapunov equation technique.

We have also studied the error of the inverse system which
contains the anti-causal inverse of the inner factor and the
causal inverse of the outer factor. The error of the inverse
system is derived in terms of the initial state values and the
zero state response. Because of the anti-causal nature of the
anti-casual inverse of the inner factor, although V V̂ = I
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Fig. 2. Input-Output and mix-causal inverse system error with zeros
appending

for infinitely long signal computing, V V̂ in general is not
equal to I for finite length computing of signals. Hence the
system inversion error is inevitable by using the anti-causal
realization. It is also shown that the inversion error can be
reduced by appending zeros to the input sequence.
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