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Linear Algebra techniques in stability problems of systems over rings

A. Sáez-Schwedt (Univ. León) and T. Sánchez Giralda (Univ. Valladolid)

Abstract— Systems over rings are a generalization of linear
control systems, which are used in the study of evolution
processes that can be modelled as differential or difference
equations. This has lead to the use of Linear Algebra over
rings in Control Theory.

This paper deals with stability problems for non-necessarily
controllable systems. The systematic use of the residual rank of
a system allows us to introduce the classes of PS rings, strong
CA rings and strong FC rings, which generalize the known
classes of PA, CA and FC rings. If a ring R has the property
that all unimodular vectors can be completed to invertible
matrices, then we prove that systems over R have good stability
conditions.

I. INTRODUCTION AND BASIC DEFINITIONS

Many physical systems can be described by state- and
input- variables and modelled linearly by:

x′(t) = Ax(t) + Bu(t) or x(t + 1) = Ax(t) + Bu(t),

where t denote the continuous or discrete time, the state and
input vectors x, u belong to some n- and m- dimensional
spaces, and A,B are matrices of size n × n and n × m,
usually with real or complex coefficients in the continuous
case, or integer coefficients in the discrete case. Note that
the behavior of such a system is completely determined
by the pair of matrices (A,B). For example, all states
are reachable at finite time starting from the origin and
choosing appropriate inputs if and only if the n×mn matrix
[B|AB| · · · |An−1B] has rank n.

A major theme in Control Theory is the use of linear
(static) state feedback A 7→ A+BK to achieve the stability
of the closed-loop system (A + BK,B), for example by
obtaining all eigenvalues λ of A+BK with negative real part
(in the continuous case) or with |λ| < 1 (in the discrete case).
Moreover, the characteristic polynomial of A is not altered
by a change of basis in either the input or state space, which
correspond to the operations (A,B) → (PAP−1, PB) and
(A,B) → (A,BQ), for invertible matrices P,Q. Taking to-
gether changes of basis and feedback we obtain the feedback
group acting on the set of all systems (A,B) of fixed sizes
n,m. The orbit of a system (A,B) is formed by all systems
(PAP−1 + PBK,PBQ), with P,Q invertible matrices.

Some classes of systems, including delay differential
systems, parameter-depending systems and other examples
arising in Coding Theory or finite automata, yield linear
dynamical systems with coefficients in commutative rings
such as complex or real polynomials, Z, finite fields or rings,
rings of functions (continuous,analytical), etc. See [1] for a
description of the motivation behind the study of systems
over rings.

Let R be a commutative ring with 1. An m-input, n-
dimensional system (or a system of size (n,m)) over R
will be a pair of matrices (A,B), with A ∈ Rn×n and
B ∈ Rn×m. The residual rank of the system (A,B),
denoted by res.rk(A,B), is defined as the reduced rank of
the reachability matrix A ∗ B = [B|AB| · · · |An−1B], i. e.
res.rk(A,B) = max{i : Ui(A ∗ B) = R}, where Ui(A ∗ B)
denotes the ideal of R generated by the i × i minors of
the matrix A ∗ B, with the convention U0(A ∗ B) = R.
Recall that Ui(A ∗ B) ⊇ Ui+1(A ∗ B) for all i (see [12]
for properties of the ideals of minors). The system (A,B)
is reachable or controllable if and only if res.rk(A,B) = n,
and res.rk(A,B) ≥ 1 if and only if U1(B) = R, i.e. B has
unit content.

The following stability conditions are classically defined
for systems: feedback cyclization (FC), also known as Hey-
mann’s Lemma; coefficient assignability (CA); and pole
assignability (PA). It is well known that FC ⇒ CA ⇒ PA,
and these properties necessarily imply reachability, as proved
by Sontag in [15].

In [8] (resp. [14]), the class of PS rings (resp. strong CA
rings) is introduced as those rings for which every system is
pole assignable (resp. coefficient assignable) in the following
sense: if r = res.rk(A,B) and f(x) = (x−x1) · · · (x−xr),
where x1, . . . , xr are arbitrary scalars from R (resp. f(x)
is a monic polynomial of degree r over R), there exists a
matrix K over R such that χ(A + BK), the characteristic
polynomial of A + BK, is a multiple of f(x).

Similarly, a strong FC ring is defined in [13] as a ring R
such that any system (A,B) over R is feedback cyclizable:
there exist a matrix K and a vector u with coefficients in R
such that res.rk(A + BK,Bu) = res.rk(A,B).

It is immediate that PS rings are PA rings, strong CA rings
are CA rings and strong FC rings are FC rings, just take
r = n in the previous definitions. Also, strong FC rings are
strong CA rings, which are PS rings, generalizing the known
result for the reachable case. The following commutative
rings are strong FC rings: fields, local and semilocal rings,
local-global rings, rings with many units, zero-dimensional
rings, in particular von Neumann regular rings and Artinian
rings, and Bezout domains with stable range 1, including
certain rings of analytical functions.

The paper is organized as follows. In section II, we define
the residue rank of a system, which allows us to extend to
arbitrary systems all forms of stability usually studied for
reachable systems. The main theorem of this section proves
that the classical implications FC ⇒ CA ⇒ PA also hold for
the strong classes of rings previously defined.

In section III, we prove that the above implications are
strict, and we exhibit a large class of commutative rings for
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which the classical forms of PA, CA and FC are equivalent
to the strong form of the corresponding properties.

Finally, section IV contains some concluding remarks,
as well as some comments on the ‘dynamic’ versions of
the pole assignability, coefficient assignability and feedback
cyclization properties.

II. STABILITY PROPERTIES AND CANONICAL FORMS

Let Σ = (A,B) be a system over a commutative ring R,
and denote by Max(R) the set of all maximal ideals of R.
For every m ∈ Max(R), let Σ(m) = (A(m), B(m)) denote
the system over the quotient field R/m obtained from Σ by
reducing all entries modulo m. The reachability matrix of
the system Σ(m) is

A(m) ∗ B(m) = [B(m)|A(m)B(m)| · · · |A(m)n−1B(m)]

Since Ur(A ∗B) = R if and only if rank(A(m) ∗B(m) ≥ r
for all maximal ideals m, we have that

res.rk(A,B) = min{rank(A(m) ∗ B(m) : m ∈ Max(R)}

Remark 1: The residual rank of a linear system is in-
variant under feedback, a fact that we will use systemati-
cally throughout the paper: indeed, if (A′, B′) is feedback
equivalent to (A,B), we have that (A′, B′) = (PAP−1 +
PBK,PBQ), for matrices P,Q,K with P,Q invertible.
A long but straightforward matricial calculation shows that
there is an isomorphism between the R-modules Im(A′∗B′)
and Im(A∗B), then for every maximal ideal m of R we have
the equality rank(A′(m) ∗ B′(m)) = rank(A(m) ∗ B(m)),
and hence one has res.rk(A′, B′) = res.rk(A,B).

An important consequence of this fact is that all the
stability properties studied are invariant under the feedback
action.

Proposition 2: Let (A,B) and (A′, B′) be two equivalent
systems over a ring R, then (A,B) is pole assignable (resp.
coefficient assignable) (resp. feedback cyclizable) iff (A′, B′)
is pole assignable (resp. coefficient assignable) (resp. feed-
back cyclizable).
Proof. Let us prove the coefficient assignability case. Let r =
res.rk(A,B) = res.rk(A′, B′), and take matrices P,K1, Q
(P,Q invertible) such that A′ = PAP−1 + PBK1 and
B′ = PBQ. Suppose that (A′, B′) is coefficient assignable,
and let f(x) be any monic polynomial of degree r. Thus,
there exists a matrix K ′ such that χ(A′ +B′K ′) is divisible
by f(x). Substituting and operating, we have that A′ +
B′K ′ = P (A + B(K1P + QK ′P ))P−1, which has the
same characteristic polynomial as A + B(K1P + QK ′P ),
hence we have found a matrix K = K1P +QK ′P such that
χ(A + BK) is divisible by f(x), i.e. (A,B) is coefficient
assignable. This also proves the pole assignability case.

Similarly, if (A′, B′) is feedback cyclizable, there ex-
ist a matrix K ′ and a vector u′ such that res.rk(A′ +
B′K ′, B′u′) = r. Operating as before, A′ + B′K ′ =
P (A + B(K1P + QK ′P ))P−1 and B′u′ = PBQu′. This
system has the same residual rank as the equivalent system
(A + B(K1P + QK ′P ), BQu′), which is of the form
(A + BK,Bu), for K = K1P + QK ′P and u = Qu′.
¤

It is a classical result (see [7]) that working with reachable
systems one has that FC ⇒ CA ⇒ PA. As one would expect,
the same implications hold for the strong form of these
properties, which is the main result of this section. Before
proving this fact, we need some auxiliary results.

Remark 3: Let R be an Hermite ring in the sense of Lam:
stably-free R-modules are free, or equivalently, unimodular
vectors can be completed to invertible matrices. Consider
a single-input n-dimensional system (A, b) over an Hermite
ring with res.rk(A, b) ≥ r. In [14], an almost canonical form
is obtained for such systems, by using a block decomposition.
We include here an alternative proof, which illustrates most
of the algebraic and linear algebraic techniques used in this
paper.

First, we claim that Ur(Nr) = R, where Nr is the n × r
matrix [b|Ab| · · · |Ar−1b]. This is clear if r = 1: if the all
the entries of b were in some maximal ideal m of R, the
same would be true for the matrix Nn = A ∗ B and one
would have res.rk(A,B) = 0. Now suppose r > 1. Since
res.rk(A, b) ≥ r > r− 1, by induction on r we may assume
that Ur−1(Nr−1) = R. We will derive a contradiction if
Ur(Nr) is contained in some maximal ideal m. For each i,
consider the R/m vector space Ni = im(Ni(m)), so that
Ni ⊆ Ni+1 for all i. Since dimNr−1 ≥ r−1 and dimNr <
r, we must have Nr−1 = Nr, both with dimension r − 1.
But the maps:

ϕi : Ni/Ni−1 −→ Ni+1/Ni

x + Ni−1 7−→ Ax + Ni

are surjective for all i (see [11]), hence Nr−1,. . .,Nn have all
dimension r−1, which is impossible because res.rk(A, b) ≥
r means that Nn(m) = A(m)∗B(m) has rank ≥ r over R/m.
This proves the claim.

Now, Ur(Nr) = R means that Nr is left-invertible, so that
the exact sequence of R-modules

0 → Rr Nr→ Rn → Rn/im(Nr) → 0

is split. If we denote by Mr = Rn/im(Nr), we have
Rn ∼= im(Nr) ⊕ Mr and im(Nr) ∼= Rr. Since stably-
free modules over Hermite rings are free, Mr must be
free, and hence there exists an n × n invertible matrix
P−1 = [x1| · · · |xn] whose first r column vectors are those
of Nr, i.e. Pb = x1,Ax1 = x2, . . ., Axr−1 = xr, therefore
the system (PAP−1, P b) is of the form
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where the first block of PAP−1 is r × r. For each i
descending from r to 2, we can use the 1 in position (i, i−1)
of PAP−1 to clean the row i as follows: subtract from
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columns i, . . . , n appropriate multiples of column i − 1,
which is done by right multiplication by a suitable matrix
P−1

i
. Then, left multiplication by Pi consits of adding to the

row i− 1 multiples of the rows i, . . . , n, which affects only
the positions i−1, . . . , n (not the 1 in position i−2) and has
no effect on Pb. After this process, we have an equivalent
system

(P2 · · ·PrPAP−1P−1
r

· · ·P−1

2 , P2 · · ·PrPb).

Denote this system by (P̃AP̃−1, P̃ b), and note that (P̃AP̃−1

has no ∗’s in the rows 2, . . . , r. As P̃ b = Pb is the first basic
vector of Rn, there exists a feedback matrix K̃ such that
P̃AP̃−1 + P̃ bK̃ has zeros in the first row. Thus, we have
arrived at a system (Ã, b̃) = (P̃AP̃−1 + P̃ bK̃, P̃ b) in which
the upper-left r×r block of Ã, together with the upper r×1
block of P̃ b, form a reachable system which is in the control
canonical form of [7, Lemma 2.4].

Now we can state and prove the implications among the
studied stability properties.

Theorem 4: Strong FC rings are strong CA rings, and
strong CA rings are PS rings.
Proof. It is immediate that strong CA rings are PS rings.
Now, let R be a strong FC ring and let (A,B) be a
system over R with res.rk(A,B) = r, and let f(x) =
xr + ar−1x

r−1 + · · · + a1x + a0 be a monic polynomial
of degree r over R. By the strong FC property, there exist
K1, u with res.rk(A + BK1, Bu) = r. Note that strong FC
rings are Hermite: they are FC rings, and hence GCU rings
[2], a property which by [3] implies R is an Hermite ring. By
Proposition 2, we can suppose that the single-input system
(A + BK1, Bu) is in the reduced form given in Remark
3. Therefore, it is immediate to find a matrix K2 such that
A + BK1 + BuK2 is of the form
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,

with characteristic polynomial f(x)χ(A3). Thus, we have
found a matrix K = K1 + uK2 with χ(A + BK) divisible
by f(x), hence R is a strong CA ring. ¤

Remark 5: As in Remark 3, we will derive a normal form
for a multi-input system (A,B) with res.rk(A,B) ≥ r over
a strong FC ring R (cf. [13]). By the strong FC property,
there exist K,u such that res.rk(A + BK,Bu) ≥ r. Since
strong FC rings are Hermite, there exist matrices P̃ , K̃ such
that the single-input system

(P̃ (A + BK)P̃−1 + P̃BuK̃, P̃Bu)

is in the reduced form of Remark 3. We can now complete
u to an invertible matrix Q = [u|∗], such that the first
column of P̃BQ is the first basic column vector of Rn.
By elementary column operations (right multiplication by

an invertible matrix), we may assume that P̃BQ has its first
row (1, 0 · · · 0). Finally, (A,B) is equivalent to the system

(P̃ (A + BK)P̃−1 + P̃BuK̃, P̃BQ)

in the following normalized form with r 1’s:
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III. EXAMPLES

Before describing the content of this section we need
to recall some known definitions. A matrix B over R is
good if there exists A with (A,B) reachable. R is a GCU
ring if given a good matrix B there exists a vector u
such that Bu is unimodular (its entries generate R). GCU
means “Good Contains Unimodular”. If there exists u with
Bu unimodular for any B with unit content, then R is
called a UCU ring, where UCU stands for “Unit-content
Contains Unimodular”. This property, which implies the
GCU property, was introduced in [7] and was named UCU
in [2] and BCU in [5]. Examples of UCU rings include
principal ideal domains.

It can be seen that UCU rings belong to the class of rings
for which the usual forms of the PA, CA and FC properties
are equivalent to the strong forms, as we will see in the next
proposition, whose part (iii) was conjectured at the end of
[13].

Proposition 6: Let R be a UCU ring, then the following
conditions hold:

(i) R is a PA ring iff R is a PS ring.
(ii) R is a CA ring iff R is a strong CA ring.
(iii) R is an FC ring iff R is a strong FC ring.

Proof. It is proved in [14]. ¤

With the previous result and recalling some known ex-
amples, we are able to show that the implications given in
Theorem 4 are strict.

In [7] it is proved that Z is a PA ring but not a CA ring.
Being a principal ideal domain, Z is a UCU ring and hence
by the above proposition it is a PS ring and not a strong CA
ring.

On the other side, in [6] it is shown how to construct a
polynomial ring R = k[y] which is a CA ring but not an FC
ring: take k algebraically closed with characteristic different
from zero. Since R is a UCU ring, R is a strong CA ring
but not a strong FC ring, by the above proposition.

At this point, one can give examples of rings which satisfy
all the stability properties. We recall that a ring R is a local-
global ring if every polinomial admitting unit values locally,
admits unit values.

Proposition 7: The following commutative rings are
strong FC rings and hence also strong CA rings and PS rings:
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(i) Local-global rings,
(ii) Fields, local rings and semi-local rings,

(iii) Rings with many units,
(iv) Zero-dimensional rings, in particular von Neumann

regular rings and artinian rings.
(v) Bezout domains with stable range 1, in particular the

ring H(Ω) of holomorphic functions on a noncompact
Riemann surface.

Proof. (i) In [2, Prop. 3], it is shown that local-global rings
are FC rings. Also, local-global rings are UCU rings (see [5,
p.68], where UCU is called BCU). By Proposition 6, local-
global rings are strong FC rings.

(ii),(iii) and (iv) All these rings are local-global: it is
immediate that fields, local rings and semi-local rings are
local-global. For rings with many units and zero-dimensional
rings, see [12]. More examples of local-global rings are given
in [2, p.282].

(v) A Bezout domain R with stable range 1 is an elemen-
tary divisor domain, therefore it is a UCU ring by [7] and
an FC ring by [3]. Now, by Proposition 6, R is a strong FC
ring. The validity of the example H(Ω) is given in [10]. ¤

IV. CONCLUSIONS

The results contained in this paper are a new and up to date
contribution to the problems of fixing the existence of canon-
ical forms and stating the validity of stability conditions such
as Heymann’s lemma for systems over commutative rings,
which are open questions.

We believe that the systematic use of the residual rank
of a system is a very useful tool which can be exploited to
further study in the above open problems and to generalize
known results from reachable systems to arbitrary systems,
by using induction techniques.

Finally, we want to remark that the stability conditions
that we have studied are ‘static’, in the sense that there exists
also a ‘dynamic’ approach to the same properties. See [1] for
a discussion of the dynamic pole assignment, the dynamic
coefficient assignment and the dynamic feedback cyclization
problems for systems over rings.

Let (A,B) be a system of size (n,m) over a ring R with
res.rk(A,B) = r, and suppose that one can in some sense
detect or isolate a reachable part (A1, B1) as in section II:

A =

[

A1 0
A2 A3

]

, B =

[

B1

B2

]

where A1 ∈ Rr×r, A2 ∈ Rn−r×r, A3 ∈ Rn−r×n−r, B1 ∈
Rr×m and B2 ∈ Rn−r×m, with (A1, B1) reachable.

It is easy to see that the following system, augmented from
(A,B):

Ã =





0s 0 0
0 A1 0
0 A2 A3



 , B̃ =





Is 0
0 B1

0 B2





has residual rank r + s and is feedback cyclizable, where s
is the size of the augmentation necessary for the reachable
system (A1, B1) to be cyclizable (see [1]). It is an open
problem to determine the minimum size of augmentation of
a reachable system needed to obtain a feedback cyclizable
system.
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Brunovsky’s canonical form for linear dynamical systems over com-
mutative rings, Linear Algebra Appl. 233 (1996), 131–147.

[12] B. McDonald, Linear Algebra over commutative rings. Marcel Dekker,
New York, 1984.
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