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Abstract
Detection and classification of motor-related brain pat-

terns from non-invasive electroencephalograms (EEGs)
is challenging due to their non-stationarity and low
signal-to-noise ratio and requires using advanced mathe-
matical approaches. Traditionally applied methods such
as time-frequency analysis and spatial filtering allow to
quantify the main attribute of the motor-related brain ac-
tivity – contralateral desynchronization of µ-band oscil-
lations (8-13 Hz) in sensorimotor cortex – by measuring
EEG signal’s amplitude, power spectral density, location
etc. However, these features suffer from strong inter- and
intra-subject variability. So, special attention is paid to
the finding of stable features. In present paper, we inves-
tigate application of the recurrence plots – robust mathe-
matical tool for nonstationary data analysis – to explore
properties of motor-related EEG samples. Our goal is to
show that recurrence plots are sensitive to the changes
in brain activity accessed from noninvasive EEG record-
ings and may provide us a new context for interpretation
of motor-related pattern in EEG.
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1 Introduction
Detecting motor-related events using EEG signal is

highly demanded in the area of brain-computer inter-
faces development for post-stroke rehabilitation and con-
trol of external devices. The progress made in this area
allowed to connect motor action with certain phenom-
ena occurring in bran activity, forming the idea of how
motor task execution is reflected in human brain. The

well-known attribute of the motor-related activity con-
firmed by the majority of studies is event-related desyn-
chronization (ERD), which is manifested as a suppres-
sion of µ-band oscillations in sensorimotor area [Neu-
per et al., 2006; Pfurtscheller and Neuper, 1997]. Tra-
ditionally, ERD detection is done via time-frequency
analysis [Wang et al., 2004; Ince et al., 2007; Maksi-
menko et al., 2018b] with the decrease of spectral power
density as a classification criteria [Carrera-Leon et al.,
2012; Xu and Song, 2008]. Besides, various meth-
ods were applied for this purpose including spatial fil-
tering [Wang et al., 2006], detrended fluctuation analy-
sis [Pavlov et al., 2018; Pavlov et al., 2019], clasteriza-
tion methods [Chholak et al., 2019], and artificial intel-
ligence [Sakhavi et al., 2015; Grubov et al., 2017; Mak-
simenko et al., 2018a].

However, there are inherent limitations of the men-
tioned approaches, such as the lack of inter- and intra-
subjects robustness and the computational demands. For
this reason, we introduce the approach which uses con-
cept of recurrences to characterize complexity of the pro-
cess via its signal analysis. In particular, we use re-
currence plots (RPs), which is an efficient tool for vi-
sualization of repeating regimes in time series [Marwan
et al., 2007]. Quantification of RP allows to interpret
various dynamical regimes emerging in time series in
terms of signal complexity and reveal new features of
these time series. In particular, RPs were applied to
biological data analysis [Hirata et al., 2016; Acharya
et al., 2011; Acharya et al., 2013], seismic activity analy-
sis [Lin et al., 2015; Chelidze and Matcharashvili, 2015],
chemistry [Alves et al., 2017; Facchini et al., 2009],
and were especially demanded in climate research [Deng
et al., 2017; Feng and Dijkstra, 2017; Garcı́a-Olivares
and Herrero, 2013; Panagoulia and Vlahogianni, 2018].
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In the current study, we apply RPs to the EEG time se-
ries associated with hands movements. In our opinion,
lowering amplitude of EEG µ-band oscillations during
motor action is also associated with less random behav-
ior of corresponding EEG signal. In its turn, reduce of
randomness in time series generates more adjacent tra-
jectories in the phase space, which means the increase
of recurrence rate. We show that measures of recurrence
quantification analysis (RQA) are sensitive to transitions
from random uncorrelated background EEG to motor
task accomplishment, allowing to detect movement on-
set.

2 Methods
2.1 Experimental Dataset

In our research we used data obtained during the ex-
periment on recording of EEG and EMG signals while
performing actual movements with right and left hands.
For this research we selected 10 participants using fol-
lowing criteria: aged 18-33, healthy, right-handed and
not experienced in participating in similar experiments.

background task 1 task 2 task N rest

5 min 18 s 18 s 18 s 5 s

-1 0 1 2 3 4 5-6 6 12
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Figure 1. A — diagram of experimental design; B — the approxi-
mate timeline of single trial.

During the experimental session, participants were sit-
ting in a comfortable chair with both hands lying on arm-
rests or on the table in the pose that allows to avoid any
not task-related muscle tension. Experimental session
started with 5 minutes of background activity recording,
which corresponds to relaxing state of participant while
listening to the classical music, without focusing on any
particular thought. Then, the active stage started, which
consisted of two type of tasks:

1. Squeezing the left hand into fist after first short sig-
nal, holding it squeezed until the second signal, and
relax it after;

2. Squeezing the right hand into fist after first long sig-
nal, holding it squeezed until the second signal, and
relax it after;

Tasks were alternating randomly to avoid possible ef-
fects of adaptation, as well as distances between first

and second signals within one task (4-5 seconds) and be-
tween the second signal of previous task and the first sig-
nal of next task (6-8 seconds). Finally, the experimental
session ended with short period of rest. The scheme of
the experimental procedure is illustrated on Fig. 1A.

All recorded signals were amplified using non-invasive
EEG amplifier ”Encephalan-EEGR-19/26” (Medicom
MTD company, Taganrog, Russia) with sampling fre-
quency 250 Hz. Besides, we applied 50 Hz Notch filter
to both EEG and EMG.

During the experimental procedure, we recorded EEG
signal using 9 Ag/AgCl electrodes located on the sen-
sorimotor cortex according to the international ”10-10”
system of electrode application. According to recent
studies [Pfurtscheller et al., 2006] in present research
we used C3 and C4 sensors as the most informative and
reflecting contralateral properties of motor-related brain
activity.

Before proceeding with RQA, we carried out a num-
ber of following preprocessing procedures. First, EMG
from both hands were band-pass filtered in 10-100 Hz to
capture high-frequency component of the signal associ-
ated with experimental task execution. EMG recording
was necessary to capture exact moments of movement
accomplishment. For further analysis, we used filtered
EEG signal in the range 8-13 Hz to extract µ-rhythm
component. Whole experimental recording lasting ap-
proximately 20 minutes was sliced on trials, each 18 sec-
onds long, containing 6 seconds of baseline (background
activity preceding the signal), and 12 seconds fully cov-
ering the motor task. The example of single trial timing
can be seen on Fig. 1B.

2.2 Recurrence Plots
Recurrence plot (RP) is a powerful tool for visualiza-

tion and numerical analysis of repeating states emerging
in time series. State ~xi is considered as repeating, or
recurrent, if it lies in some ε-neighborhood of ~xj in the
reconstructed phase space. In other words, RPs are de-
termining as follows:

Ri,j(ε) =

{
1, ||~xi − ~xj || 6 ε

0, ||~xi − ~xj || > ε
(1)

where i, j = 1, ..., N and ε is a recurrence threshold de-
termining the size of considering neighborhood.

Elements of RP form various structures, each repre-
senting certain dynamical regime in time series. For
quantitative analysis of these structures, Eckmann et
al. [Eckmann et al., 1995] introduced recurrence quan-
tification analysis and its measures of complexity. In
present study, we use recurrence rate:

RR(ε) =
1

N2

N∑
i,j=1

Ri,j(ε) (2)
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Figure 2. A, D — raw EMG and EEG time series corresponding to
the left hand (channel C4), and right hand (channel C3), respectively;
B, E — recurrence plots of corresponding time series above; C, F —
recurrence rate calculated for corresponding recurrence plots windows
of different sizes. For illustrative purposes, we also show sized of used
windows in lower left corner of the recurrence plots. Red dashed lines
mark first and second audio command.

which measures the density of recurrence points in RP
of motor-related EEG.

In our research, we compute recurrence rate in sliding
window to monitor its evolution in time. Selection of
window size is discussed in section 3.

Finally, in order to validate our results we applied
cluster-based nonparametric statistical test with random
partitions [Maris and Oostenveld, 2007] to reveal differ-
ences between two experimental conditions (motor exe-
cution vs baseline).

3 Results
At the first step we demonstrate RPs of single trial EEG

for right and left hands in one subject (see Fig. 2). For
this illustration we selected trials with most pronounced
ERD observed on raw EEG signal associated with motor
execution (see Fig. 2A,D). One can notice that amplitude
suppression of µ-band oscillations starts even before the
movement onset according to EMG, capturing short pe-
riod of motor preparation after the first signal.

On Fig. 2B,E we show recurrence plots for correspond-
ing time series (single trial for left and right hand, chan-
nels C4 and C3 respectively). Visual inspection of RPs
showed increase of recurrence points density in the time
interval corresponding to the motor tasks, which is con-
sistent with our suggestion that lower signal amplitude

during motor-related ERD results in larger number of
neighboring trajectories in the phase space.

Since we are interested in detection of transitions from
baseline to motor-related event, we use windowed mod-
ification of recurrence rate with 3-second-window. Se-
lection of the window size is explained on Fig. 3C,F,
which presents recurrence rate calculated for windows
of different sizes (1,2 and 3 seconds corresponding to
250, 500 and 750 points of the signal). Although the
measures have similar shapes, the window expansion re-
sults in more smooth form of RR, reducing uninforma-
tive fluctuations.
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Figure 3. Recurrence rate averaged over the trials for A — right
hand, channel C3 and B — left hand, channel C4 with standard error.
Shaded area corresponds to the interval with statistical significant dif-
ferences between baseline and motor-related EEG. Red dashed marks
first audio signal.

We see that for all three window choices the recurrence
rate behaves as expected, having sharp increase shortly
before the signal and drop after the movement is com-
pleted. To validate this result, we perform the same anal-
ysis for recurrence rate in 3-seconds-window for whole
dataset. Fig. 3 demonstrates the mean value of obtained
measure with standard error and results of statistical test
represented as shaded areas.

Shape of RR averaged over subjects evidences of va-
lidity of pattern observed in single trial. Increase of RR
starts approximately 2 seconds before the signal, which
can be explained by the shift in RR values provided by
sliding window. However, area of statistically significant
differences between motor accomplishment and baseline
is strongly associated with motor task, since it starts al-
most simultaneously with the signal and ends after 5th
second, when motor task is completed. Therefore, sig-
nificant increase of RR is strongly associated with move-
ment execution and even captures short period of mo-
tor preparation. We conclude, that RR not only allows
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to reveal hidden transitions associated with signal struc-
ture alternation during motor action, but also is sensitive
enough to detect the movement onset using µ-rhythm
component of EEG signal.

4 Conclusion
In present paper, we demonstrated the ability of recur-

rence quantification analysis to detect motor-related pat-
tern. We observed strong motor-related increase of re-
currence rate peaking during the movement onset. Area
of statistical significant difference between baseline and
the time interval corresponding to the movement fits be-
tween two audio signals determining start and end of mo-
tor task. We believe that results of this research will be
useful for further investigations of RPs use in EEG anal-
ysis, and especially in brain-computer interface applica-
tions.
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