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Abstract
We study a quantum compound Markov chain mem-

ory channel, addressing a specific two-state case, com-
bining an amplitude damping channel and a dephasing
channel. The sender’s knowledge of this channel af-
fects the behavior of its coherent information. We study
the quantum capacity of this channel, comparing the
case in which transmitter doesn’t have any information
about the channel in the current use and the case of an
informed user. This is done by maximizing coherent
information respect to the input of amplitude damping
channel and depolarizing channel. We also propose a
Hamiltonian for this channel which well describes our
model in certain limit conditions, thus substantiating it
from the physical point of view. Moreover the Hamilto-
nian model allows for generalization of the compound
channel. This work offers a practical and suitable for
applications case-study which demonstrates that unin-
formed user case represents the ”worse case” scenario.
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1 Introduction
Quantum mechanics offers new and attractive per-

spectives for information processing and transmission
[Benenti, Casati and Strini 2004] [Benenti, Casati and
Strini 2007]. A large scale quantum computer, if con-
structed, would advance computing power much be-
yond the capabilities of classical computation, while
quantum cryptography allows a provable secure data

exchange. However, due to the unavoidable coupling
of any quantum system to its environment, decoher-
ence effects appear. This introduces noise, thus dis-
turbing the programmed quantum coherent evolution.
The decoherence problem is conveniently formulated
in terms of quantum operations. Given the initial state
ρ of a quantum system Q and an overall unitary evo-
lution U of system plus environment, the final stateρ

′

is obtained after tracing over the environment degrees
of freedom:ρ

′

= E(ρ) = TrE [U(ρ ⊗ w0)U†], where
w0 is the initial state of the environment (we assume
that initially the system and the environment are not
entangled). The mapE is known as a quantum oper-
ation or a superoperator. It is interesting to consider
E as a quantum channel. This approach encompasses
both noisy propagation in time and in space. In the first
case, the mapE describes the evolution from timeti
to time tf of some piece of quantum hardware,ρ and
ρ

′

being the system states atti and tf , respectively.
In the latter, the quantum system Q plays the role of
information carrier in a two-party communication sce-
nario:ρ is the quantum state at the entrance of the com-
munication channel andρ

′

the output state, corrupted
by noise effects described by the quantum operation
E . Fundamental quantities characterizing a quantum
channel are theclassicaland thequantum channel ca-
pacities, that are defined as the maximum number of
bits/qubits that can be reliably transmitted per channel
use. We focus on quantum capacity, which is related
to the transmission of quantum information. Usually
quantum channels are assumed to be memoryless, that
is, the effect of the environment on the input states is
always the same for each channel use. In other words,



there is no memory in the interaction between carriers
and environment: the quantum operation for N chan-
nel uses is given byEN (ρ(N)) = E⊗N (ρ(N)), where
ρ(N) is the density matrix which describes the quan-
tum source in input to the N channel uses. However,
in several physically relevant situations this is not a re-
alistic assumption. Memory effects appear when the
characteristic time scales for the environment dynam-
ics are longer than the time between consecutive chan-
nel uses. For instance, solid state implementations of
quantum hardware, which are the most promising for
their scalability and integrability, suffer from low fre-
quency noise. In optical fibers, memory effects may ap-
pear due to slow birefringence fluctuations. This intro-
duces correlation among channel uses, i.e., the effect of
the environment on one carrier depends on the past in-
teractions between the environment itself and the other
carriers. This kind of channels are known as memory
channels [Macchiavello and Palma 2002] [Plenio and
Virmani 2007] [D’Arrigo, Benenti and Falci 2007].
This paper is organized as follows. We first recall
the concept of quantum capacity for a quantum chan-
nel.Then we introduce two kind of memoryless chan-
nel, namely dephasing channel and amplitude damping
channel, discussing about their quantum capacity. We
use these results to study a compound channel made
up of a dephasing channel plus an amplitude damping
channel showing the behavior of its quantum capac-
ity. Finally we give a Hamiltonian model which can
describe this specific compound channel, showing the
possible physical relevance of this model.

2 Quantum capacity
The Quantum capacityQ [Barnum, Nielsen and

Schumacher 1998] refers to the coherent transmission
of quantum information; it is the maximum number of
qubit that can be reliably transmitted per channel use,
in the limit of an infinite number of uses. The value of
Q can be computed, for memoryless channels, as

Q = lim
N→∞

QN

N
(1)

QN = max
ρ

Ic(EN , ρ(N))

Ic(E , ρ) = S(E(ρ)) − Se(ρ)

Here S(ρ) = −Tr
(

ρ log2(ρ)
)

= −∑i λi log2(λi)
is the Von Neumann entropy,Se(ρ) is the entropy
exchange [Barnum, Nielsen and Schumacher 1998],
which measures the noise introduced by the channel.
The quantityIc(E , ρ) is called coherent information
and must be maximized overall input statesρ.
The limit N → ∞ in 1 makes the evaluation ofQ
difficult. On the other hand this regularization is nec-
essary, since in generalIc is not subadditive. If the
channel is degradable [Devetak and Shor 2005], the
regularization is not necessary: infact in this case the
coherent information is subbaditive and therefore the

quantum capacity is given by the ’single letter’ formula
Q = Q1 = maxρ Ic(E , ρ)

3 Amplitude damping channel and dephasing
channel

In this section we introduce the behavior of dephas-
ing channel and amplitude damping channel and the
expression for their coherent information quantifiers.

3.1 Dephasing channel
This class of quantum channels models those sys-

tems in which relaxation times are much longer than
dephasing ones. They are characterized by the prop-
erty that when N qubits are sent through the channel,
the states of a preferential orthonormal basis are trans-
mitted without errors. Therefore, dephasing channels
are noiseless from the viewpoint of the transmission of
classical information, since the states of the preferen-
tial basis can be used to encode classical information.
Of course superpositions of basis states may decohere,
thus corrupting the transmission of quantum informa-
tion. For instance a dephasing channel can be mod-
elled by the Hamiltonian [D’Arrigo, Benenti and Falci
2007]

H(t) = HS + HE − 1

2
XEF (t) (2)

HS =

N
∑

k=1

Ω

2
σ(k)

z

F (t) = λ
N
∑

k=1

σ(k)
z fk(t)

whereHS describes a series of identical qubits,HE is
the Hamiltonian of Markovian environment, andXE is
an enviroment operator. The qubits in an orderly way
interact with the environment by the functionsfk(t),
which switchs on and off the interaction between the
k-th qubit and the environment. In this case the cou-
pling between the qubits and the environment is longi-
tudinal so that the Hamiltonian (2) properly describes a
dephasing channel.
The input state density matrix can be parametrized as:

ρ =
(

1 − p r
r∗ p

)

(3)

wherep is the population of the qubit excited state, and
r are the qubit coherences. The effect of a dephasing
channel results in an output state [Nielsen and Chuang,
2000; Benenti, Casati and Strini 2007]:

ρ
′

= Edeph(ρ) =

(

1 − p βr∗

βr p

)

(4)

whereβ describes the decay of qubit coherences. This
channel is degradable [Devetak and Shor 2005], this



implies that in (1) the limitN → ∞ isn’t necessary
and equation (4) is sufficient to calculateQ. Since
it has been shown that coherent information is maxi-
mized by mixed input states [Wolf and Garcia 2003],
we letr = 0 and maximize respect to the populationp.
The corresponding coherent information is given by:

Ic(Edeph(ρ)) = (5)

= H2

(1

2

[

1 −
√

(1 − 2p)2
]

)

+

−H2

(1

2

[

1 −
√

β2 + (1 − β2)(1 − 2p)2
]

)

whereH2(p) = −p log2 p − (1 − p) log2(1 − p) is
the binary entropy. It can be found that (5) reaches its
maximum forp = 1/2, then:

Qdeph = 1 − H2

(1 − β

2

)

(6)

3.2 Amplitude damping channel
This channel describes the effect of a Markovian en-

vironment transversally coupled to the qubit system, in
the small temperature limit (KBT ≪ Ω). This situa-
tion reproduces the noisy dynamics of solid state qubit
at optimal working point, due to high feqrency noise
comopenents, as noise from control circuitry [Ithier et
al. 2005]. The Hamiltonian model is the same of the
one in equantion (2), but in this case the system opera-
tor describing the coupling between the k-th qubit and
the environment has to be replcaced byσ

(k)
x .

The effect of an amplitude damping channel on the
input state (3) is described as follows [Nielsen and
Chuang, 2000; Benenti, Casati and Strini 2007]:

EAD(ρ) =

(

1 − ηp
√

ηr∗√
ηr ηp

)

(7)

whereη is a decay factor affetting the population of
the excited state, and so it describes the channel noise
level. Also the amplitude damping channel is degrad-
able [Giovannetti and Fazio 2005], then single letter
formula can be used to calculate the quantum capacity.
Maximizing the coherent information with respect to
the input state, it turns out that maximum is reached for
mixed states (r = 0); for these states we have [Giovan-
netti and Fazio 2005]:

Ic(EAD(ρ)) = (8)

= H2

(1

2

[

1 −
√

(1 − 2ηp)2
]

)

−H2

(1

2

[

1 −
√

[1 − 2(1 − η)p]2
]

)

It follows that quantum capacity of an amplitude
damping channel is

QAD = max
p

Ic(EAD(ρ)) (9)

In this case the optmization has to be numerically per-
formed, and the value which optmizes the (9) depends
on the channel parameterη.

4 Markov chain memory channel
A Markov chain memory channel is a class of memory

channel characterized by the map:

E(N)(ρ(N)) = (10)
∑

i1,...,iN

q(iN |iN−1) . . . q(i2|i1) · q(i1) ·

·
(

Ei1 ⊗ · · · ⊗ EiN

)

(ρ(N))

This mathematical model describes a behaviour of a
channel in which each use is correlated with the pre-
vious one in a such way that it doesn’t depend from
all past uses but only from the previous one. Here
j ∈ {1, ..., N} represent the j-th use of the channel
andq(ij |ij−1) is the conditional probability which cor-
relates two successive uses.

5 Quantum compound channels
This channel class describes a multiple-map chan-

nel in which the transmitter and the receiver are unin-
formed about the behavior of the channel: at the first
use, when Alice sends a quantum state through the
channel, she doesn’t know which map will be applied
to the input state; this uncertainty is described by the
probability distributionq1, q2, ..., qN . For successive
uses of the channel, assuming thatEi is the map ap-
plied at the first use, thenEi will be applied to all suc-
cessive input states. Quantum compound channels can
be considered as a limiting case of Markov chain mem-
ory quantum channels, in which there aren’t transitions
between different states, but only from a state to itself.
Their behavior is described by the following map:

E(N)(ρ(N)) =

N
∑

i=1

qiE⊗N
i

(

ρ(N)
)

(11)

Several scenarios of utilization of this kind of channel
have been studied:uninformed transmitter, informed
transmitter, informed receiver[Bjelacović, Boche and
Nötzel 2008]. We focus on the first one, considering
the case in which neither the the transmitter nor the re-
ceiver know what channel they actually use to commu-
nicate. Indeed, the main assumption commonly made
about a communication channel is that both transmitter
and receiver know apriori the channel which their infor-
mation carrier will be sent through. But sometimes this
hypothesis cannot be satisfied: transmitter and receiver
know only a set of possible map that could be applied
to the information carrier, in a non-deterministic way.
In this case the quantum capacity of the channel is



given by the expression [Bjelacović, Boche and Nötzel
2008]:

Q(J ) = lim
N→∞

max
ρ∈S(H⊗N )

[

min
i

Ic(ρ, E(⊗N)
i )

]

(12)

whereJ = {E1, E2, . . . Ei, . . .} is our compound chan-
nel, andi is an index that discriminates a channel inside
the set of the compound channel.
Alice’s lack of knowledge implies worse perfomance
in the communication task. Indeed if Alice knew apri-
ori the map that will be applied to the message, she
could choose an encoding maximizing the coherent in-
formation of this map. This means that maximization
is made a priori. Otherwise, in the case of uninformed
transmitter scenario, none tells Alice which map will
be applied, and she has first to consider the channel that
worstly transmit an arbitratry input state: she makes a
minimization on the channel; then she can make the
best encoding choice: the maximization on the input
states.

5.1 A specific model
We propose a simple kind of compund channel, for

which is possible to study its quantum capacity utiliz-
ing the results of [Bjelacović, Boche and Nötzel 2008].
This consists of a quantum compound channel made
up of an amplitude damping channel and a dephasing
channel.
Another specific model of quantum compound chan-
nel which has been studied [Dorlas and Morgan 2008]
in the past consists of an amplitude damping channel
and a dephasing channel and the classical capacity was
found [Datta and Dorlas 2007]. This offers an exam-
ple which shows that the classical capacity of a quan-
tum compound channel cannot -in general- be simpli-
fied to the expression valid in the informed transmitter
scenario.
Here we show that quantum capacity cannot be sim-
plified with the expression for the informed transmitter
scenario.
In figure 1 we plot the coherent informations of several
amplitude damping channels and dephasing channels,
for different values of their respective noise paprame-
tersη andβ; we utilized equations (5) and (7), so we
have yet partially maximized respect to the input state
(r = 0), and curves only depends on the qubit excited
state population. First of all we can note that both quan-
tities are monotonic respect to the damping parameters
of the channels. As a consequence of this, if we con-
sider a quantum compound channel model made only
of some amplitude damping channels (or dephasing
channels), the minimization in equation (12) is trans-
lated into a minimization respect toη (orβ). Therefore,
we can conclude that this minimization doesn’t depend
on the input state distribution, hence maximization on
the input states and minimization over the set of the
maps describing the channel can be inverted.
In general this doesn’t hold when different type of
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Figure 1. Coherent information vs population of input state, of

some amplitude damping channels (green straight line) and dephas-

ing channels (red dashed line), forη ∈ {0.5, 0.55, ..., 1} and

β ∈ {0, 0.1, ..., 1} respectively.
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Figure 2. Coherent information of an amplitude damping channel

(green straight line,η = 0.9) and a dephasing channel (red dashed

line, β = 0.9).

channel are considered. Now let’s consider a com-
pound channel made up of a dephasing channel and
an amplitude damping channel:J = {Edeph, EAD},
choosing specific values of the parametersβ andη. In
Figure 2 we plot their coherent informations as func-
tions of qubit excited populationp. We can clearly
observe that curves of coherent informations of the
choosen amplitude damping channel and dephasing
channel intersect. This results in a non-monotonical
behavior of this specific type of compound channel, so
that minimization and the maximization operation in
equation (12) cannot be inverted. The value of quantum
capacity can be found numerically solving the equation
(12).

6 Hamiltonian model

We propose a Hamiltonian model for the compound
channel introduced in the previous section. This model
may describe a semiconductor-based memory cell. The
cell is coupled to an impurity, which has bistable be-
havior with a characteristic time1/γ. The compound
channelJ = {Edeph, EAD} can be described by the



following Hamiltonian:

Hcompound = H + δH
δH = −v

4
σx(1 − τz) + γ∗τ+ + γτ− (13)

in whichH is the Hamiltonian in (2). We assume that
v ≫ Ω andtuse ≪ 1/γ, this last condition ensuring
that during the timetuse in which we use the channel
we can neglect the dynamics of the impurity, i.e. the
impurity doesn’t change its state. When the expecta-
tion value of the impurity operatorτz is 1, the coupling
between each qubit and the environment is longitudi-
nal so that the Hamiltonian (13) describes a dephasing
channel. Otherwise, when this expectation value is−1,
due to the fact thatv ≫ Ω, the impurity drastically
changes the qubit working point so that the coupling
between each qubit and the environment turns to be
transverse: in this case the Hamiltonian (13) can ef-
fectively describe an amplitude damping channel.

7 Conclusions
The dominant mechanism for quantum capacity of our

compound channel model depends on initial encoding:
the transmitter has a given knowledge of the system
which lays him to make a proper choice on the way to
encode his message; if he knows a priori the map that
will be applied to the system he can make an apriori
maximization over the input states. Otherwise he has
to firstly consider the worse case for all the input states,
and then choose the maximizing source.
We speculate that the model we study is interesting for
applications and propose a Hamiltonian model which
relates to a physical system already studied [Paladino
et al. 2002; Falci et al. 2005]. Notice that removing the
limit condition tuse ≪ 1/γ in the Hamiltonian allows
to make calculation in different regimes, corresponding
to more general error models.
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