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Abstract
A very important topic in galactic dynamics is the

detection of instabilities of a given system and the pos-
sible appearance of chaos. Such a chaotic bahaviour
can be detected and studied by means of variational
chaos indicators (CIs). The CIs are based on the study
of the evolution of initial deviation vectors, which
makes these techniques specially sensitive to indicate
the presence of chaos.

Herein, we present an alpha version of a program
coded in Fortran, the LP-VIcode. Although the
code is in a developing stage, it can compute several
CIs, and here we apply it together with the Frequency
Modified Fourier Transform (FMFT) ([Sidlichovský
and Nesvorný, 1996]) to study the stationary space
([Schwarzschild, 1993]) of an average realistic Hamil-
tonian model ([Muzzio, Carpintero and Wachlin,
2005]).

Using the LP-VIcode, in [Maffione, Darriba, Cin-
cotta and Giordano, 2011b] and [Darriba, Maffione,
Cincotta and Giordano, 2012] the authors suggest an
efficient package of CIs to study a general Hamil-
tonian. Here the research is extended to show that
the complementary use of the LP-VIcode and the
spectral analysis methods is highly recommended to
study a realistic Hamiltonian model.
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1 Introduction
The detection of chaotic behaviour in any dynamical

system, such as galaxies or planetary systems, may be
carried out by means of several techniques. The most
commonly used are those based on spectral analysis
and on the study of the evolution of the deviation
vectors, the so-called variational chaos indicators
(CIs hereafter). Among the CIs we can find several
examples: the Lyapunov Indicators (LIs) (see [Benet-
tin, Galgani and Stralcyn, 1976]; [Benettin, Galgani,
Giorgilli and Strelcyn, 1980]; [Froeschlé, 1984];
[Tancredi, Sánchez and Roig, 2001] and [Skokos,
2010]), the Relative Lyapunov Indicator (RLI) (see
[Sándor, Érdi and Efthymiopoulos, 2000]; [Széll, Érdi,
Sándor and Steves, 2004]; [Sándor, Érdi, Széll and
Funk, 2004] and [Sándor, Süli, Érdi, Pilat-Lohinger
and Dvorak, 2007]), and the Smaller Alignment Index
(SALI) ([Skokos, 2001]; [Széll, Érdi, Sándor and
Steves, 2004]; [Bountis and Skokos, 2006]; [Carpin-
tero, 2008]; [Antonopoulos, Vasileios and Bountis,
2010]). All of them have their own advantages and
disadvantages, making them particularly suitable for
different situations.

It could be very interesting and fruitful to have the
possibility of easily computing any CI. This is the
main goal of the first part of this work where we
present an alpha version of the LP-VIcode (the
acronym for La Plata-Variational Indicators code).
The aim of the code, as its name suggests, is to easily
compute several CIs and, for instance, in [Maffione,
Darriba, Cincotta and Giordano, 2011b] (hereafter
M11) and [Darriba, Maffione, Cincotta and Giordano,
2012] (hereafter D12), the authors use it to make a
comparative evaluation among them in order to analize



the main advantages and drawbacks of each indicator.
On the other hand, in the second part of this work
we present the results of the application of the CIs
implemented within the code, together with a spectral
analysis method, to show that the complementary
use of both types of chaos detection tools is strongly
advisable.

As the CIs are based on the concept of local ex-
ponential divergence, they are specially sensitive to
indicate the presence of chaos. The introduction of the
Lyapunov Characteristic Exponents (LCEs) (see e.g.
[Skokos, 2010] for a current thorough discussion) as
well as its numerical implementation ([Benettin, Gal-
gani, Giorgilli and Strelcyn, 1980]; [Skokos, 2010])
was a major contribution to the advance of chaos detec-
tion. The integration time is bounded, so we are able to
reach just truncated approximations of the theoretical
LCEs, i.e. the already mentioned LIs. A drawback of
the computation of the LIs is their very slow speed of
convergence. Nevertheless, since the introduction of
the first definition of the LI, a large number of CIs have
improved the LIs’ slow speed of convergence holding
many useful characteristics of it. The following CIs
are already implemented in the LP-VIcode with the
LI: the Mean Exponential Growth factor of Nearby
Orbits (MEGNO) ([Cincotta and Simó]; [Cincotta,
Giordano and Simó, 2003]; [Giordano and Cincotta,
2004]; [Goździewski, Konacki and Maciejewski,
2005]; [Gayon and Bois, 2008]; [Lemaı̂tre, Delsate
and Valk, 2009]; [Hinse, Christou, Alvarellosn and
Gózdziewski, 2010]; [Maffione, Giordano and Cin-
cotta, 2011a]; [Comére, Lemaı̂tre and Delsate, 2011])
and a quantity derived from it: the MEGNO’s Slope
Estimation of the largest LCE (SElLCE), the SALI
and its generalized version, the Generalized Alignment
Index (GALI) ([Skokos, Bountis and Antonopoulos,
2007]; [Skokos, Bountis and Antonopoulos, 2007];
[Manos and Athanassoula, 2011]), the Fast Lyapunov
Indicator (FLI) ([Froeschlé, Gonczi and Lega, 1997a];
[?]; [Froeschlé and Lega, 1998]; [Froeschlé and Lega,
2000]; [Lega and Froeschlé, 2001]; [Guzzo, Lega
and Froeschlé, 2002]; [Froeschlé and Lega, 2006];
[Paleari, Froeschlé and Lega, 2008]; [Todorović, Lega
and Froeschlé, 2008]; [Lega, Guzzo and Froeschlé,
2010]), its first order variant, the Orthogonal Fast Lya-
punov Indicator (OFLI) ([Fouchard, Lega, Foreschlé
and Froeschlé, 2002]) and its second order variant, the
OFLITT2 ([Barrio, 2005]; [Barrio, Blesa and Serrano,
2009]; [Barrio, Blesa and Serrano, 2010]); the Spectral
Distance (D) ([Voglis, Contopoulos and Efthymiopou-
los, 1999]) and the Dynamical Spectras of Stretching
Numbers (SSNs) ([Voglis and Contopoulos, 1994];
[Contopoulos and Voglis, 1996]; [Contopoulos and
Voglis, 1997]; [Contopoulos, Voglis, Efthymiopoulos
Froeschlé, Gonczi, Lega, Dvorak and Lohinger,
1997]; [?]). Finally, we have also implemented the
RLI and the Average Power Law Exponent (APLE)
([Lukes-Gerakopoulos, Voglis and Efthymiopoulos,

2008]). The RLI is not based on the evolution of the
solution of the first variational equations as the rest
of the variational indicators implemented, but on the
evolution of two different but very close orbits. The
APLE is based on the concept of Tsallis Entropy.

The other widespread techniques devoted to chaos
detection are the analysis of some particular quantities
(e.g. the frequency) of a single orbit. The main
contributions in the area of chaos detection is due to
[Binney and Spergel, 1982] and [Laskar, 1990] (see
also [Laskar, Froeschlé and Celetti, 1992]; [Papa-
philippou and Laskar, 1996]; [?]). The Frequency
Modified Fourier Transform (FMFT) outlined by
[Sidlichovský and Nesvorný, 1996] is another example
of such kind of technique. The FMFT is the spectral
analysis method selected for this investigation.

As previously mentioned, in M11 the authors com-
pare the CIs implemented in an early version of the
LP-VIcode on symplectic mappings. In D12, the
authors use a later version of the LP-VIcode (where
the CIs library was increased). Therefore, they do not
only extend the work on mappings to a simple Hamil-
tonian flow: the [Hénon and Heiles, 1964] potential,
but also they increase the number of CIs considered in
the comparison. Both works deal with a comparative
evaluation of the following CIs: the LI, the MEGNO,
the SALI and the GALIs (GALIk with k = 2, 3, 4), the
FLI and the OFLI, the D and the SSNs and the RLI on
symplectic mappings and a Hamiltonian flow. Finally,
they suggest an efficient set of CIs (or CI’s function
which they call CIsF) composed by the pair FLI/OFLI,
the MEGNO and the GALI2N to study a general
N–degree of freedom (d.o.f.) Hamiltonian system. In
a work in progress, we use the latest version of the
LP-VIcode, and do some experiments in a somehow
realistic model of a triaxial stellar Hamiltonian system
([Muzzio, Carpintero and Wachlin, 2005]; [Cincotta,
Giordano and Muzzio, 2008]). The LP-VIcode
latest version library of CIs includes all the CIs
mentioned in the earlier versions of the code, plus the
SElLCE, the OFLITT2 and the APLE. We extend the
previous comparative studies of the CIs and find that
the CIsF to study a general Hamiltonian system can
be improved considering the pair FLI/OFLI, the pair
MEGNO/SElLCE and the OFLITT2 or the GALI2N .
The pair FLI/OFLI and the pair MEGNO/SElLCE are
recommended to study big samples of orbits by means
of just computing their final values. The OFLITT2

or the GALI2N are suggested to study small regions
of very complex dynamics or regions dominated by
strong chaos ([Skokos, Bountis and Antonopoulos,
2007]; [Skokos, Bountis and Antonopoulos, 2008];
D12), respectively. However, here we are going to
test the CIs against a spectral analysis method on two
regions of the stationary and the x0 − z0 start spaces
([Schwarzschild, 1993]) of the self–consistent triaxial
stellar Hamiltonian model previously mentioned. In



order to do so, we use one of the recommended CIs to
study big samples of orbits, i.e. the MEGNO/SElLCE,
and the LI (both techniques already implemented in the
LP-VIcode) and the FMFT as the selected spectral
analysis method.

This paper is organized as follows: in Section 2 we
present the code and explain its main features. In Sec-
tion 3 we apply the LP-VIcode to study a realistic
model. In order to investigate the advantages and draw-
backs of the selected CIs included in this version of the
LP-VIcode and the FMFT, we apply both types of
chaos detection techniques to study the same space and
compare the results in Section 4

2 The LP-VIcode
The LP-VIcode (in its alpha version) computes

several CIs. It was coded in FORTRAN 77, although
it is intended to be recoded in FORTRAN 90 on a later
version.

Although the current version of the code is in a
developing stage, it has already implemented twelve
indicators, already named in Section 1 The record is:
the LI, the RLI, the SALI, the GALIk, the MEGNO,
the SElLCE, the FLI, the OFLI, the OFLITT2 , the D,
the SSNs and the APLE.

2.1 The CIs implemented in the LP-VIcode
2.1.1 The Lyapunov Indicator (LI). Consider a

continuous dynamical system defined on a differen-
tiable manifold S, where ~Φt(~x) = ~x(t) characterizes
the state of the system at time t, ~x(0) = ~x0 being the
state of the system at time t = 0. Therefore, the state
of the system after two consecutive time steps t and t′

will be given by the composition law: ~Φt+t
′

= ~Φt◦~Φt′ .

The tangent space of ~xmaps onto the tangent space of
~Φt(~x) according to the operator d~x~Φt and following the
rule ~w(t) = d~x~Φ

t(~w(0)) where ~w(0) is an initial devi-
ation vector. The action of such operator at consecutive
time intervals satisfies the equation:

d~x~Φ
t+t′ = d~Φt′ (~x)

~Φt ◦ d~x~Φt
′
.

If we suppose that our manifold S has some norm de-
noted by ‖ · ‖, we can define the quantity:

λt(~x) =
‖d~x~Φt ~w‖
‖~w‖

called “growth factor” in the direction of ~w.

Consider an N -dimensional Hamiltonian H(~p, ~q),
with ~p, ~q ∈ RN , which we consider it autonomous just
for the sake of simplicity. Let us remember that

~x = (~p, ~q) ∈ R2N , ~f(~x) = (−∂H/∂~q, ∂H/∂~p) ∈ R2N ,

and then, the equations of motion are

~̇x = ~f(~x). (1)

Let γ( ~x0; t) be an arc of the orbit in the flux given
by equation (1) over a compact energy surface: Mh ⊂
R2N ,Mh = {~x : H(~p, ~q) = h} with h a constant, then

γ( ~x0; t) = ~x(t′; ~x0) : ~x0 ∈Mh, 0 ≤ t′ < t.

We define the LCE χ:

χ[γ( ~x0; t)] = lim
t→∞

1

t
lnλt[γ(~x0; t)], (2)

and for its numerical implementation in the
LP-VIcode we take the finite time limit of Eq.
(2);

LI = lim
t→T

1

t
lnλt[γ(~x0; t)],

with T a finite time.

2.1.2 The Relative Lyapunov Indicator (RLI).
If we graph the fluctuations of the LI, they are not sig-
nificative. Thus, in order to amplify those fluctuations
[Sándor, Érdi, Széll and Funk, 2004] define the quan-
tity:

∆LI( ~x0; t) = ‖LI( ~x0 + ~∆x; t)− LI( ~x0; t)‖,

where ~x0 and ~x0 + ~∆x0 are two very close initial con-
ditions at time t, separated by a quantity | ~∆x|, which is
a free parameter. Then, the RLI is defined through the
expression:

RLI(t) =< ∆LI( ~x0) >t=
1

t

t/δt∑
i=1

∆LI( ~x0, i× δt),

(3)
with i the number of steps of stepsize δt. We use the
expression (3) in the LP-VIcode in order to compute
the RLI.



2.1.3 The Dynamical Spectra of the Stretching
Numbers (SSNs) and the Spectral Distance (D).
The local stretching number si is defined as:

si =
1

δt
ln
|d~x~Φt+i×δt(~ω(0))|
|d~x~Φt+(i−1)×δt(~ω(0))|

, (4)

where d~x~Φt+i×δt(~ω(0)) = ~ω(t+ i× δt) is the devia-
tion vector at time t+ i× δt.
Then, the SSNs are given by the density probability of

the values s given by the si, i.e.

S(s)ds =
dN(s)

N
, (5)

where N is the total number of si and dN(s) is the
number of si in the interval (s, s+ ds). Thus, the com-
puting of the SSNs in the LP-VIcode is just the con-
struction of these histograms.
Then, the D is computed as the difference of two his-

tograms of a given orbit. That is

D2 =
∑
s

[S1(s)− S2(s)]2 ×∆s, (6)

where Sj(s) is the normalized number of si associated
to the initial deviation vector ~ωj(0), which has values
in the interval s, s+ ∆s.
The implementation of both the SSNs and the D in the
LP-VIcode is based on the work of [Voglis, Con-
topoulos and Efthymiopoulos, 1999] and summarized
by Eqs. (4), (5) and (6).

2.1.4 The Mean Exponential Growth Factor of
Nearby Orbits (MEGNO) and the MEGNO’s Slope
Estimation of the largest Lyapunov Characteristic
Exponent (SElLCE). The concept of local mean ex-
ponential rate of divergence of nearby orbits becomes
evident when we rewrite the value of the LCE (Eq. 2)
in an integral fashion:

χ[γ(~x0; t)] = lim
t→∞

1

t

∫ t

0

‖ḋγ~Φt
′
~w‖

‖dγ~Φt′ ~w‖
dt′.

Then, [Cincotta and Simó] defined the value Y as

Y [γ(~x0; t)] =
2

t

∫ t

0

‖ḋγ~Φt
′
~w‖

‖dγ~Φt′ ~w‖
t′dt′.

Finally, they introduced the MEGNO define as the av-
erage of Y , i.e.:

Y [γq( ~x0)] ≡ 1

t

∫ t

0

Y [γq( ~x0; t′)]dt′. (7)

Having the value of the MEGNO (Eq. (7)), [Cincotta,
Giordano and Simó, 2003] suggest a linear behaviour
to enclose the MEGNO’s performances for regular and
chaotic orbits,

Y [γ( ~x0; t)] ≈ aγt+ bγ , (8)

where aγ = χγ/2 and bγ ≈ 0 for irregular, chaotic
motion, while aγ = 0 and bγ ≈ 2 for quasiperiodic
motion.
The SElLCE takes the last 80% of the time series sam-
plings and makes a linear least square fit, in order to
estimate the value of χ through the MEGNO behaviour
given by Eq. (8).
The LP-VIcode computes the MEGNO following

the Eq. (7), and makes the least square fit to recover
the Eq. (8) and compute the SElLCE.

2.1.5 The Smaller Alignment Index (SALI) and
the Generalized Alignment Index (GALI). In
[Skokos, 2001], the authors introduce the SALI in the
following way: first they define the parallel and antipar-
allel index

d− = ‖~ω1 − ~ω2‖, d+ = ‖~ω1 + ~ω2‖, (9)

respectively. Then, they define the SALI at a time t as
the lowest of these two indexes:

SALI(t) = min(d+, d−). (10)

In [Skokos, Bountis and Antonopoulos, 2007], the
SALI is generalized, introducing the GALI as

GALIk(t) = ‖ŵ1(t) ∧ ŵ2(t) ∧ · · · ∧ ŵk(t)‖,

where ŵi(t) = ~wi(t)
‖~wi(t)‖ , i = 1, 2, . . . , k is the normal-

ized deviation vector.
As the computing of the GALI is very expensive in

computational terms, [?] introduced a variation for the
numerical computation of the GALIk by making use
of the singular value decomposition (SVD routine) of
matrices and found that

log(GALIk) =

k∑
i=1

log(zi), (11)



where the zi are singular values of a given matrix Z.
The LP-VIcode computes the SALI following Eq.

(10) and the GALI using the SVD routine of Numerical
Recipes1 to calculate the indicator through Eq. (11).

2.1.6 The Fast Lyapunov Indicator (FLI) and the
Orthogonal Fast Lyapunov Indicator (OFLI). The
FLI is a quantity closely related to the LI, which
can distinguish between chaotic and regular motion
([Froeschlé, Gonczi and Lega, 1997a]; [Froeschlé,
Lega and Gonczi, 1997b]) and even between reso-
nant and non-resonant motion ([Froeschlé and Lega,
2000]; [Lega and Froeschlé, 2001]; [Guzzo, Lega and
Froeschlé, 2002]) using (just) the first part of the nu-
merical computing of the largest LCE.
For anN -dimensional system, in the LP-VIcodewe

follow the time evolution of the 2N deviation vectors
and take the (euclidean) norm of each one. Then we
record every K time steps, the largest of the norms, i.e.
at time t the FLI is computed as

FLI(t) = sup
t

[‖~w1(t)‖, ‖~w2(t)‖, . . . , ‖~w2N (t)‖] .
(12)

As to the OFLI (see [Fouchard, Lega, Foreschlé and
Froeschlé, 2002]), it is similar to the FLI, but in this
case we take the orthogonal component to the flow of
each deviation vector of the basis, time to time. Then it
is defined as

OFLI(t) = sup
t

[
w1(t)⊥, w2(t)⊥, . . . , w2N (t)⊥

]
.

(13)
Notice that, although in the LP-VIcode we ini-

tially use the original definition of the FLI given in
[Froeschlé, Gonczi and Lega, 1997a], to define the
OFLI, we later included the definition of the FLI given
in [Froeschlé and Lega, 2000], where the authors use
only one deviation vector. As they claim, the results
do not vary, but the CPU-time is obviously reduced.
Finally, the OFLI can be also computed using just
one deviation vector, following the definition given in
[Fouchard, Lega, Foreschlé and Froeschlé, 2002].

2.1.7 The OFLI2
TT . In [Barrio, 2005] the author

defines the OFLI2TT , a second order variational indica-
tor, as follows:

OFLI2
TT (t) = sup

0<t<tf

ŵ(t)⊥,

ŵ(t)⊥ being the orthogonal component of the flow of
~̂w(t), where ~̂w(t)

1See [Skokos, Bountis and Antonopoulos, 2008] for further de-
tails.

~̂w(t) = ~w(t) +
1

2
~w(2)(t)

~w(t) and ~w(2)(t) being the solutions of the first and
second order variational equations at time t, respec-
tively.
Finally, in the LP-VIcode we take the superior
ŵ(t)⊥ in the interval (0, tf ] for a given total time tf .
For further details, we refer to [Barrio, 2005]; [Barrio,
Blesa and Serrano, 2009]; [Barrio, Blesa and Serrano,
2010].

2.1.8 The Average Power Law Exponent (APLE).
This method is based on the concept of Tsallis Entropy,
thoroughly explained in [Lukes-Gerakopoulos, Voglis
and Efthymiopoulos, 2008]. Thus, here we limit our-
selves to show the formula we use to compute the indi-
cator in the LP-VIcode.
For anN–dimensional Hamiltonian, these authors con-
sider a partitioning of the 2N–dimensional phase space
S into a large number of volume elements of size δ2N

for some small δ and let ~x(0) be the initial condition of
an orbit located in a particular volume element. Thus,
they introduce the APLE as follows:

APLE =
ln
(
|~w(t)|2
|~w(t1)|2

)
2 ln

(
t
t1

) ,

where |~w(t)|2 =
∑m
k=1 ‖~wk(t)‖2, and ~wk(t) is one of

them deviation vectors of an orthogonal basis {~wk(t)}
of the tangent space to S at the initial point ~x(0). Every
~wk(t) has a length greater or equal to δ, and t1 is a
transient initial time of the evolution of the orbits.

2.2 The arrangement of CIs in units
As the dynamics of a given Hamiltonian should be

analysed using different techniques, providing a vari-
ety of CIs in the LP-VIcode proves advantageous.
Nearly all the CIs mentioned in Section 2.1 are

completely independent from each other and can be
computed separately. The only exceptions are the
SElLCE, which it strictly depends on the MEGNO
values to do the least square fit, and the RLI (which
is the difference between the LI of two close orbits).
Nevertheless, the main drawback of computing them
separately is the huge amount of CPU time required.
An alternative to reduce such a time-consuming pro-
cess is to arrange the CIs according to (the similarity
in) their computation. That is, although nearly all
indicators can be computed independently, some of
them share some basic routines. For instance, both
the FLI and the OFLI use the evolution of the same
2N deviation vectors, N being the number of degrees



of freedom of the system2. Therefore, we decided to
group the CIs in units the indicators sharing part of
their computing processes.
This grouping is ordered as follows: the RLI is
implemented in the same unit as the LI because it
is the difference between the LI for two close initial
conditions. Furthermore, the SALI is implemented in
the same unit as the LI and the RLI, since it uses the
evolution of the length of 2 deviation vectors. This
is done in order to share the routine that computes
the evolution of the deviation vectors which uses a
renormalization process. Because the SElLCE (as
mentioned before) uses the MEGNO to estimate the
LI of the orbit, both CIs, the MEGNO and the SElLCE
belong to the same unit. The FLI, the OFLI and the
APLE can be computed using the same deviation
vectors (2N or just one, depending on the definition).
Moreover, all of them use a routine that computes
the evolution of the deviation vectors without the
renormalization process previously used with the LI,
RLI or SALI. The SSNs are basically built on the
computation of histograms, and the D uses the differ-
ence of the SSNs for two different deviation vectors
of a given orbit. Then, both of them are included in
the same unit. The GALIk is computed in a different
unit, due to the fact that it is the only CI using the
SVD routine (see Section 2.1). The OFLITT2 is in a
separate unit because it is the only CI that needs the
computation of the second order variational equations,
which requires the evaluation of third order derivatives.

Finally, the CIs implemented so far are arranged in the
LP-VIcode as follows:

Unit 1: LI, RLI and SALI
Unit 2: MEGNO and SElLCE
Unit 3: FLI, OFLI and APLE
Unit 4: SSN and D
Unit 5: GALIk
Unit 6: OFLITT2

2.3 The input files
The LP-VIcode needs two input files in order to

work. One of these files is a parameter file, in which
all the information about the calibration of the indica-
tors as well as the format of the output files is intro-
duced. The other one is an input data file, which indi-
cates which orbits we would have to compute.

2.3.1 The parameter file. Nearly all parameters
can be set from this parameter file and only a few are
still remain in the main program (mainly related with
the specific problem). The main structure of this file
consists of two parts. The first one arranges the input
and output filenames and the second one arranges the

2According to the orginal definition given in [Froeschlé, Gonczi
and Lega, 1997a], they can use the same deviation vector, accord-
ing to the actual definition given in [Froeschlé and Lega, 2000], see
Section 2.1 for further details.

parameters themselves. These parameters are the fol-
lowing:

Physical parameter: the energy of the system (in
case the user does not specify all the initial condi-
tion coordinates of the phase space).
RLI parameter: the initial separation of both orbits
(see Section 2.1).
Output parameter: a binary value to set which out-
put is preferred in the computation, i.e. “0” only
the final value of the CI (i.e. the value of the indi-
cator at the end of the computing process) and “1”
the time evolution of the CI.
Trajectory parameter: a binary value to print the
phase space coordinates of the orbit (“1”), or skip
the time-consuming writing process (“0”).
CIs’ selection parameter: a set of integer values to
specify which units or CIs are to be computed.
Formatting parameters.

The CIs’ selection parameter is one of the key pa-
rameters of the code, because it allows us to compute
several CIs (with the efficient grouping mentioned
before) to reduce the CPU time (see Section 2.2),
or to compute them separately. The parameter is
a horizontal array of 6 integers (one for each unit)
which indicates the program if a given unit should
be computed (value set equal to “1”) or not (value
set equal to “0”). In the case of the second unit (the
MEGNO and the SElLCE), “1” is adopted so as to
compute the MEGNO alone and “2” to compute the
MEGNO and the SElLCE together.

2.3.2 The data file. The data file has a very sim-
ple format. In the first commented line, the order in
which the program will read the data values is speci-
fied, i.e. the cartesian coordinates, the conjugate mo-
mentums and, the total integration time.

2.4 The Integrator
There are a lot of Ordinary Differential Equations

(ODEs) integrators which can be implemented in the
LP-VIcode, and the independency from the integra-
tor routine is part of a future implementation. On the
other hand, all the indicators already implemented in
the code must integrate not only the equations of mo-
tion but also the first (and second) variational equa-
tions. Therefore, we need to count on an efficient inte-
grator for these tasks. For instance, according to D12, a
suitable integrator routine is the Prince & Dormand im-
plementation of a Runge-Kutta method of order 7 − 8
called DOPRI8 (for more information see [Prince and
Dormand, 1981]. Thus, the DOPRI8 routine is the
ODEs integrator selected for the current version of the
LP-VIcode.



3 Applications
In order to compare both types of chaos detection

techniques (i.e. the variational and the frequency-
based ones), we apply the MEGNO/SElLCE and the
LI as representatives of the variational indicators im-
plemented in the LP-VIcode and the FMFT, which is
the selected spectral analysis method. Thus, in this sec-
tion we are going to use the LP-VIcode and a spectral
analysis method as complementary tools to study two
regions of the stationary and the x0 − z0 start spaces
([Schwarzschild, 1993]) of the model introduced in
[Muzzio, Carpintero and Wachlin, 2005] which will be
briefly described in the next section.

3.1 The potential
The self–consistent triaxial Hamiltonian model of an

elliptical galaxy is obtained after the virialization of
an N–body self–consistent system composed of 105

particles ([Muzzio, Carpintero and Wachlin, 2005]).
The model reproduces many dynamical characteristics
of real elliptical galaxies, such as mass distribution,
flattening, triaxiality and rotation ([Muzzio, 2006]).
Therefore, it seems to provide a useful realistic sce-
nario to apply the LP-VIcode and the FMFT as well.
The equation that reproduces the potential is

V (x, y, z) = −f0(x, y, z)−fx(x, y, z)·(x2−y2)−
− fz(x, y, z) · (z2 − y2),

where

fn(x, y, z) =
αn

[pann + δann ]
acn
an

, (14)

αn, δn, an, acn are constants and p2
n is the square of

the softened radius given by p2
n = x2 + y2 + z2 + ε2

when n = 0, or p2
n = x2 +y2 +z2 +2 ·ε2 for n = x, z.

The adopted value for the softening parameter is ε '
0.01 for any n. The functions fn(x, y, z) were com-
puted through a quadrupolarN–body code for 105 par-
ticles, which allowed the authors to write them in a gen-
eral fashion given by Eq. (14). The adopted values for
the constants αn, δn, an and acn are given in Table
1. For further references, see [Muzzio, Carpintero and
Wachlin, 2005] and [Cincotta, Giordano and Muzzio,
2008].
The stationary character of the parameters given in Ta-

ble 1 were tested by performing several fits at differ-
ent times after virialization, resulting in a precision of
0.1%.
After the system had relaxed, there remained 86818

particles resembling an elliptical galaxy (the system
obeying a de Vaucouleurs’ law, as shown in Fig. 2 in
[Muzzio, Carpintero and Wachlin, 2005]) with a strong
triaxiality and a flattening that increases from the bor-
der of the system to its center (see Table I in the same
paper).

Table 1. Adopted values for the coefficients of the functions fn
given by Eq. (14).

α a δ ac

n = 0 0.92012657 1.15 0.1340 1.03766579

n = x 0.08526504 0.97 0.1283 4.61571581

n = z −0.05871011 1.05 0.1239 4.42030943

The obtained triaxial potential has semi–axes X,Y, Z
satisfying the condition X > Y > Z, and its mini-
mum, which is close to −7, matches the origin. As ex-
pected, the potential is less flattened than the mass dis-
tribution (see Table I in [Muzzio, Carpintero and Wach-
lin, 2005]).
As we mentioned at the beginning of this section, the

potential seems to provide a useful realistic scenario to
test the LP-VIcode and the FMFT. Thus, in the next
subsection, we describe how we proceed (in order) to
compare both techniques as chaos detection tools.

3.2 Comparative evaluation of the FMFT and the
SElLCE as global chaos detection techniques

3.2.1 Preliminaries. Herein we apply a spectral
analysis method, the FMFT, and a CI, the SElLCE (one
of the indicators in the library of the LP-VIcode)
to two regions on the energy surface −0.7 of the
potential described in Section 3.1. In order to compare
both techniques as chaos detection tools we apply the
FMFT and the SElLCE to a few samples of initial
conditions in the stationary space and in the x0 − z0

start space of the self-consistent triaxial stellar model.

There are several ways to compare chaos detection
tools. Our choice is to determine which technique of-
fers the most detailed phase space portrait using the
same integration time. Therefore, we must first deter-
mine an integration time by which the techniques (at
least for most of the initial conditions of the samples)
are out of a transient regime; otherwise, we will obtain
unreliable phase space portraits.
We will consider a time of 103 characteristic times3

to keep the LI out of the transient interval, as the au-
thors did in [Maffione, Giordano and Cincotta, 2011a].
That is, a convergent LI is the criterion used (in order)
to yield reliable values of the CIs, in particular of the
MEGNO/SElLCE indicators. From [Maffione, Gior-
dano and Cincotta, 2011a] we know that for the energy
surface −0.7, the characteristic time is ∼ 7 u.t. So, (in
order) to obtain reliable values for the CIs previously
mentioned, the integration time must be 7× 103 u.t.
The FMFT indicates regular motion when the fre-

3We approximate this time-scale as the period of the axial orbit
on the semi-major axis X of the model.



quencies do not change in time, i.e. the orbit is con-
fined within a torus, which is well defined by a set of
N frequencies (where N is the number of the d.o.f. of
the system). However, if the orbit is chaotic, there is a
variation in the frequencies. This lack of constancy in
time means that the orbit is not confined within a torus4.
The precision on the computation of the frequencies is
a key parameter, because the FMFT might not show a
variation of the frequencies in time and thus, it might
not be able to distinguish chaotic from regular orbits.
Then, to determine such a precision and the efficiency
in describing the phase space portraits of the triaxial
model for the FMFT, we use the same final integration
time used with the SElLCE, i.e. 103 periods, which is
enough to stabilize the LI for most of the initial condi-
tions of the samples.
Finally, the equations of motion and their first vari-

ationals are integrated for a final integration time of
7× 103 u.t. in the case of the SElLCE. For the FMFT,
we compare the computation of the fundamental fre-
quencies in two 50% ([Wachlin, Ferraz-Mello, 1998]
overlapping time intervals, (in order) to estimate possi-
ble variations in the frequencies. The first interval goes
from 0 u.t. to 7 × 103 u.t., and the second one, from
3.5× 103 u.t. to 1.05× 104 u.t.
We apply the SElLCE and the FMFT to 624100 or-

bits in the region of the stationary space and to 596258
orbits in the region of the x0 − z0 start space.
The integration of the equations of motion, which are

necessary to compute the frequencies with the FMFT,
was carried out with the taylor package ([Jorba and
Zou, 2005]), which proved to be a very convenient tool
for the model under analysis (see D12). The precision
required for the phase space coordinates was of 10−15.

On the other hand, the integrations for the LI and the
MEGNO/SElLCE were carried out with the DOPRI8
routine (see Section 2.4), which it is more efficient than
taylor in the case of the simultaneous integration of
both the equations of motion and their variational equa-
tions for the self-consistent triaxial stellar model (we
refer to D12 for further details). The energy preserva-
tion with DOPRI8 was of the order of∼ 10−13, 10−14.
The following configuration was used for all the com-

putations included in this paper: a) Hardware: CPU,
2 x Dual XEON 5450, Dual Core 3.00GHz; M.B., In-
tel S5000VSA; RAM, 4GB(4x1GB), Kingston DDR–
2, 667MHz, Dual Channel. b) Software: gfortran 4.2.3.

3.2.2 The experiment. In order to use the FMFT
as a chaos detection tool, we compute the quan-
tity log(∆F ) ([Wachlin, Ferraz-Mello, 1998]). The
log(∆F ) is defined as ∆F ≡ |ν(1)

x − ν(2)
x | + |ν(1)

y −
ν

(2)
y |+ |ν(1)

z − ν(2)
z |, where ν(i)

j is the fundamental fre-

4For further details on the FMFT, refer to [Sidlichovský and
Nesvorný, 1996]. Herein, we simply describe how the indicator dis-
tinguishes between chaotic and regular motion, because it is needed
(in order) to compare its performance with the variational tool, the
SElLCE.

quency computed with the FMFT and associated with
the degree of freedom j (j = x, y, z) for the inter-
val (i), with i = 1, 2 (the two overlapping time in-
tervals). Besides, we must have all the fundamental
frequencies computed for every orbit on both intervals
and this is not the general case for every orbit. Thus,
the phase space portraits of the log(∆F ) finally consist
of 622521 orbits on the stationary space and 594690
orbits on the x0 − z0 start space.
In Fig. 1 we present the SElLCE (left panels) and

the log(∆F ) (right panels) values for the region on the
stationary space (top panels) and for the region on the
x0−z0 start space (bottom panels) of the triaxial model
under analysis.
Although the SElLCE and the FMFT show similar re-

sults on the stationary space (top panels of Fig. 1), the
latter includes a high amount of spurious structures5

on the x0 − z0 start space (bottom right panel of Fig.
1). This spurious structures jeopardize the choice of a
threshold value in order to identify regular and chaotic
orbits due to an unclear separation of the different kind
of motions. On the contrary, with a variational indica-
tor as the SElLCE (bottom left panel of Fig. 1), this
classification into regular and chaotic motion seems to
be more natural and thus, more efficient. Neverthe-
less, if in the x0 − z0 start space we take as chaotic
orbits those which preserve 4 decimal digits or fewer
in their computed fundamental frequencies with the
FMFT, we recover the phase space portrait obtained by
the SElLCE.
This kind of results, where the distinction between

chaotic and regular motion is not as clear as the one
given by variational indicators like the SElLCE, makes
the FMFT a less reliable indicator when we study the
global dynamics of a divided phase space.
The process used to determine the chaoticity or regu-

larity of the orbits by means of the FMFT is standard.
Then, the somehow inaccurate descriptions of the por-
traits of divided phase spaces might be basically due to
a high sensitivity of the method with its parameters.
As regards the computing times, the SElLCE (one of

the fastest CIs, together with the FLI and the MEGNO),
took ∼ 670 hs for an integration time of 7 × 103 u.t.
and for 624100 orbits on the stationary space. For the
594690 orbits on the x0 − z0 start space, the CI took
∼ 330 hs.
Although the computing of the fundamental frequen-

cies with the FMFT is quite fast, the determination of
the log(∆F ) is time consuming. For instance, for the
generation of the right panels of Fig. 1, two 50% over-
lapping time intervals of 7 × 103 u.t. each were nec-
essary. In other words, the integration of the equa-
tions of motion was performed for a total time inter-
val of 1.05 × 104 u.t. in order to have the frequencies
computed after 103 periods in both intervals, the same
amount of periods used with the SElLCE. Finally, the

5Some of them due to the Moiré phenomenon, which is common
with methods using the discrete Fourier transform ([Barrio, Blesa and
Serrano, 2009]).



time taken by the log(∆F ) was ∼ 885 hs. for the sta-
tionary space and∼ 450 hs. for the x0− z0 start space.
Therefore, the computing speed of the fundamental fre-
quencies by the FMFT is lost against the whole process
involved in the determination of the variation of the fre-
quencies with the log(∆F ). In fact, the computing of
the log(∆F ) is necessary to distinguish between reg-
ular and chaotic orbits with the FMFT and thus, the
FMFT as a global chaos indicator turns out to be slower
than the SElLCE (and other similar fast CIs).
In the next section we consider the FMFT as an appro-

priate method for the determination of the fundamental
frequencies only of the regular orbits as well as an effi-
cient tool to determine the resonant map of the system.
Furthermore, we use the FMFT as an complement to
the LP-VIcode in order to depict the global picture
of the stationary phase space.

4 Complementary use of the LP-VIcode and the
FMFT

The analysis by means of the LI, the
MEGNO/SElLCE and the FMFT of the stationary
space of the triaxial potential of [Muzzio, Carpintero
and Wachlin, 2005] for different energy surfaces
gives us enough information to shortly discuss the
advantages of using both types of techniques together,
i.e. CIs (within the LP-VIcode) and spectral analysis
methods (with the FMFT).

4.1 The contribution of the LP-VIcode
We consider samples of 1000444 initial conditions for

the energy surfaces defined by the constant values−0.1
and −0.7; the integration times are of 1.17 × 105 u.t.
(for the energy surface −0.1 the period of the semi-
major axis orbit is ∼ 117 u.t.) and 7 × 103 (see Sec-
tion 3.2), respectively . As the computing times be-
come critical in the experiment, we select, from the
LP-VIcode, CIs of low computational cost: the LI
and the MEGNO/SElLCE (the FLI/OFLI could be an
equal efficient alternative).
The corresponding phase space portraits are presented

in Fig. 2, left panel for the energy surface −0.1 and
right panel for the energy surface −0.7.
The SElLCE shows a very good performance in de-

scribing the phase space portraits corresponding to a
strongly divided phase space like the present one. Nev-
ertheless, as it has not a natural way to determine a
threshold value to distinguish chaotic from regular or-
bits, we have to estimate it (in order) to study the phase
space portraits presented by the SElLCE in Fig. 2.
To determine such threshold for the SElLCE, we can

calibrate the CI in order to obtain similar percent-
ages of chaotic and regular orbits than those obtained
with other confident CI with a defined threshold. The
MEGNO is the first alternative due to the fact that
the SElLCE needs its computation. However, as the
MEGNO shows a high sensitivity with its asymptoti-
cally theoretical threshold (see e.g. M11; D12), it is not

reliable to be used to calibrate other indicators. There-
fore, we use other indicator already implemented in the
LP-VIcode.
As aforementioned, the computing time is a key vari-

able in the experiment, and thus, the LI is the CI of
least computational cost given a fixed total integration
time. Moreover, the indicator has a theoretical thresh-
old value to start with: ln(T )/T , with T being the total
integration time. Starting with the theoretical approx-
imation of the threshold, we calibrate it by inspection
and find appropriate threshold values for the LI for both
energy surfaces. Finally, the threshold of the SElLCE
is estimated by an iterative process, which is stopped
when the percentage of chaotic orbits best approxi-
mates the percentage of the chaotic component yielded
by the LI.
In Table 2 we present, from left to right, the energy

surface, the threshold value (Vc) estimated for the LI,
the corresponding percentage of chaotic orbits, the es-
timated threshold value for the SElLCE and the corre-
sponding percentage of chaotic orbits.

Table 2. For both energy surfaces considered on the stationary
phase space (i.e. −0.1 and −0.7): the threshold value used for
the LI, the percentage of the chaotic component given by the LI, the
estimated threshold value for the SElLCE and the corresponding per-
centage of the chaotic component are detailed.

Energy Vc (LI) Chaos (%) -LI Vc (SElLCE) Chaos (%) -SElLCE

−0.1 1.2× 10−4 ∼ 71.46% 1.4× 10−5 ∼ 66.83%

−0.7 1.7× 10−3 ∼ 65.09% 2.7× 10−4 ∼ 62.87%

Independently of the energy surface considered, the
chaotic component dominates the phase space portraits
(columns 3 and 5 of Table 2). However, as we move
to more negative energy surfaces (−0.7), the regular
component increases. The variation is not important
along the energies considered, though.
On the left panel of Fig. 2, we observe that the chaotic

and regular components are almost separated. On the
one hand, we have the chaotic component fully con-
nected for values of px0 . 1.7, and the region of reg-
ular orbits for values of px0 & 1.7, except for some
structures which arise from the border of the energy
surface and enter the regular component. Furthermore,
these structures multiply themselves as we go to more
negative energies (more bonded regions of the poten-
tial). These structures are resonances that overlap with
each other, and start to populate the regular compo-
nent. We can also observe a division inside the chaotic
component, where the connected chaotic domain move
back to lower values of px0

, giving place to another
chaotic domain characterized by a regime of resonance
overlap and by a lower Lyapunov exponent (notice the



different colours). On the right panel of Fig 2, for an
energy surface of −0.7, the resonances fill the regu-
lar component; strong resonances in the chaotic do-
mains are also observed. The most remarkable is the
one which lies around px0 ∼ 0.5.
Given a global portrait as the one shown by means

of the SElLCE, with a variational indicator we can vi-
sualize many phenomena such as how the chaotic and
regular components interact, where the resonances ap-
pear and how they overlap to generate chaotic regions.
However, we should make a great effort with the CIs
if we need more detailed information because we need
the resonant map to understand many of the causes of
such phenomena.
In order to obtain the resonant map, the time evolution

of the CIs which can provide information about the di-
mensionality of the torus on which the regular orbits
lie (like the GALIs) can be analyzed, and thus, infer
the resonances to which they belong. There is another
way to identify the periodic orbits (e.g. using the OFLI)
and analyze their stability (as done in [Cincotta, Gior-
dano and Muzzio, 2008] with the MEGNO) in order to
search for orbital families generated by perturbations to
such parent periodic orbits in nearby regions. However,
this process could be very slow because the CIs are not
the best suited for the task.
It remains to apply the method of spectral analysis, i.e.

the FMFT, to improve the study of the regular compo-
nent with the associated resonant map, and thus, com-
plement the information given by the SElLCE (also as-
sisted by the LI).

4.2 The contribution of the FMFT
We use the FMFT to compute the frequencies of a rep-

resentative sample of regular orbits and determine the
resonant map of the stationary space studied in Section
4.1 by means of the SElLCE.
We first need to identify the sample of regular orbits

to apply the FMFT. Such a sample consists of orbits
that are simultaneously classified as regular orbits by
the MEGNO and the LI. We call this sample “A”.
Having the representative sample “A” of regular or-

bits, we integrate the equations of motion for 3 × 102

characteristic times (which gives us enough precision)
in order to compute the frequencies with the FMFT.
We are not able to compute the three fundamental fre-
quencies for all the orbits of sample “A” but for most
of them. We call this reduced sample of regular orbits
with the three fundamental frequencies computed sam-
ple “B”. Finally, we use sample “B” to compute the
commensurabilities and identify the resonance web.
We consider as resonant orbits those whose resonant

vector ~m ∈ Z−{~0} satisfies the relation: ~m ·~ν < 10−6

with ~ν being the frequency vector. The value 10−6 is
an estimated value according to the best fit between the
resonance web and the description of the phase space
previously given by the CIs (Section 4.1). We separate
the resonances according to the d.o.f. involved, i.e. into
resonances between 2 and 3 d.o.f. In the case of the res-

onances between 2 d.o.f., we only searched for those of
highest order, i.e. iterating until 2× 102 on each d.o.f.
Lastly, we sorted them by their resonant vector’s ab-
solute value which yields information about the width
and importance of the resonance ([Reichl, 2004]).
In Table 3 we show, for each energy surface and a total

of 1000444 initial conditions, the number of orbits in
the representative sample “A”, the total time used with
the FMFT to compute the fundamental frequencies, the
number of orbits in the reduced sample “B” and the
number of orbits in resonance (with 2 or 3 d.o.f. in-
volved).

Table 3. For each energy surface (i.e. −0.1 and −0.7) on the
stationary space, the following information is provided: the number
of orbits in the representative sample “A”, the integration time used
by the FMFT to determine the fundamental frequencies, the number
of orbits in the reduced sample “B” and lastly, the number of orbits
in resonance between 2 or 3 d.o.f.

Energy Sample “A” Time interval Sample “B” In resonance

−0.1 7.2426× 104 3.51× 104 7.2295× 104 1.315× 103

−0.7 7.2948× 104 2.1× 103 7.2781× 104 1.773× 103

Notice in Table 3 that the percentage of orbits in res-
onances is not high and is similar for both surfaces:
∼ 1.82% for −0.1 and ∼ 2.43% for −0.7 in the sta-
tionary space.
In Figure 3 we show the resonant maps corresponding

to the energy surfaces−0.1 (left panel) and−0.7 (right
panel) of the stationary space of the self-consistent tri-
axial stellar model of elliptical galaxy under study. The
resonant map corresponding to the energy surface−0.1
shows populated regions of resonant orbits near the
chaotic component and close to the border of the corre-
sponding energy surface. However, the resonant orbits
are of very low order (i.e. |~m|2 & 103). On the other
hand, on the right panel of Figure 3, we show the results
for the energy surface −0.7 and we observe a highly
compact resonance of high order in the chaotic domain.
In order to identify such a resonace we compute the
rotational numbers with the fundamental frequencies
given by the FMFT and find that the resonance is be-
tween 2 d.o.f., the 4 : 3 (x:y) resonance.
As we can see from the experiment, the vari-

ational indicators such as the LI and the couple
MEGNO/SElLCE (computed with the LP-VIcode)
and the spectral analysis methods such as the FMFT
work remarkably well as complementary methods.

5 Discussion
From all the studies carried on in this paper, we might

conclude that having a large indicators diversity is es-



sential to have a precise description of a dynamical sys-
tem. Thus, in the first part of this work we presented
the alpha version of the LP-VIcode. A code that is
on a developing stage but which has already proved its
value. The purpose of the LP-VIcode is to efficiently
arrange together a great variety of CIs in order to have
at hand several dynamical tools to study a given dynam-
ical system. The arrangement has not considered spec-
tral analysis methods yet, since the original idea was
to reduce the CPU time when computing several varia-
tional indicators. Nevertheless, this is not discarded for
future implementations.
The CIs included and full functioning in this alpha

version of the LP-VIcode are the following: the
LI, the RLI, the SALI, the GALIk, the MEGNO,
the SElLCE, the FLI, the OFLI, the OFLITT2 , the D,
the SSNs and the APLE (Section 2.1). They can be
computed separately or within units, i.e., in order to
reduce the CPU time economizing similar processes
they have in their computing routines (Section 2.2).

In the second part of this work, we use the availability
of the CIs given by the LP-VIcode to compare dif-
ferent sort of tools for dynamical analysis. On the one
hand, we have the CIs which are based on the concept
of local exponential divergence and follow the evolu-
tion of the deviation vectors. On the other hand, we
have the spectral analysis methods, which require the
integration of the equations of motion to compute, e.g.,
the frequencies of regular orbits.
According to previous papers such as [Barrio, Blesa

and Serrano, 2009], we find that the complementary
use of such techniques, the CIs and the spectral analysis
methods, is a very efficient way to gather dynamical
information (Section 4).
Here, we show that the SElLCE (a CI) works better

than the FMFT (a spectral analysis method) as a
global chaos detection tool (Section 3.2) to describe
the divided phase space of the self-consistent triaxial
stellar dynamical model resembling and elliptical
galaxy (Section 4.1). The fundamental frequencies of
the regular orbits easily provided by the FMFT allow
a fast building of the resonance web and thus, a quick
understanding of many phenomena described in the
phase space portraits given by the CI (Section 4.2).

Finally, in view of the present succesful applications
of the LP-VIcode, there are still many improvements
to be made to the code. Among the main goals, we can
mention the following:

To continue increasing the record of CIs in the li-
brary of the code.
To incorporate routines to compute diffusion rates,
in order to take advantage of the many computa-
tions done by the code.
To recode it in FORTRAN 90.
To make the code independent of the integrator
routine.

To make the code independent of the model, us-
ing symbolic manipulation programs to decode the
differential equations and implement them auto-
matically.

Our aim is to release a stable version of the
LP-VIcode with all those goals implemented and of-
fer the code to public domain, so that the interested
community may collaborate including their own chaos
detection tools and/or improve the ones already imple-
mented.
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137-148.
Skokos, Ch. 2001, J Phys A-Math Gen., 34, 10029-

10043.
Skokos, Ch. 2010, Lect. Notes Phys., 790, 63-135
Skokos, Ch., Bountis, T. & Antonopoulos, Ch. 2007,

Physica D., 231, 30-54.
Skokos, Ch., Bountis, T. & Antonopoulos, Ch. 2008,

The European Physical J. Special Topics, 165, 5-14.
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Todorović, N., Lega, E. & Froeschlé, Cl. 2008,
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Figure 1. Phase space portraits of the stationary space with
624100 initial conditions (top left panel) and of the x0 − z0 start
space with 596258 initial conditions (bottom left panel), using the
values of the SElLCE integrated for 7×103 u.t. Right panels, idem
but with 622521 and 594690 initial conditions (top and bottom
right panels, respectively), using the log(∆F ) integrated on two
overlapping time intervals of 7 × 103 u.t. each. The values of the
SElLCE and the log(∆F ) are in logarithmic scale.

Figure 2. Phase space portraits by means of the SElLCE for the
stationary space of the triaxial model, integrating 1000444 orbits
for 103 periods on two energy surfaces. On the left panel, for the
energy surface−0.1 within a time interval of 1.17× 105 u.t and
on the right panel, for the energy surface−0.7 within a time interval
of 7× 103 u.t. The values of the SElLCE are in logarithmic scale.



Figure 3. Resonant maps for both energy surfaces on the stationary
space. We sort the resonances by the valuem2 = |~m|2. Left panel
for the energy surface −0.1 and right panel for the energy surface
−0.7.


