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Abstract

An analysis of a nonlinear MEMs gyroscope operat-

ing under parametric resonance is presented. Drive fre-

quency and rotation rate responses are presented, and it

is shown that this gyroscope is robust under frequency

mistuning. Solution structures are developed from a

simplified system and limiting behavior is considered

for the complete system. Numerical examples are pre-

sented in support of the analytical results. The findings

support preliminary experimental results.

1 Introduction

Vibrating MEMs Gyroscopes commonly function on

the coupling of two linear resonant modes via the Cori-

olis force. Such devices employ a proof mass con-

strained to move in a plane with two resonant modes

which are nominally orthogonal. The two modes are

ideally coupled only by the rotation of the gyro about

the plane’s normal vector. High rate sensitivity for such

devices requires high resonance quality and matched

modal frequencies for the two orthogonal modes (Yazdi

et al., 1998).

These design requirements, orthogonality and fre-

quency matching, are not generally robust under pa-

rameter uncertainty. Frequency missalignment causes

substantial decrease in rate sensitivity, and model

missalignment causes erroneous rate measurement,

genereally referred to as quadrature error (Shkel et

al., 1999). Accordingly, there is sufficient motivation

to produce a gyroscope design that is robust to fabrica-

tion tolerances. There has been a great deal of research

into gyroscope design, and a myriad of gyroscopic

structures have been produced including beam, tuning

fork, ring, and gymbol designs (Yazdi et al., 1998; Es-

Figure 1. Micrograph image of the gyroscope. This device was

fabricated on an SOI wafer with a 20µm silicon layer over a 5µm

insulator using a single mask process

maeili et al., 2007; Zaman et al., 2004; Ayazi and

Najafi, 2001). An alternate, but complementary, ap-

proach to dealing with parameter uncertainty is to ac-

cept the uncertainty and use of feedback control to

counter its effects. Feedback compensation for fabrica-

tion tolerance has been extensively studied, and several

successful strategies have been developed including

frequency tuning and adaptive mode correction tech-

niques, among others (Park and Horowitz, 2003; Le-

land, 2003; Wang et al., 2006; Gallacher et al., 2005).

Some of the more novel approaches include Acar

and Shkel’s nonresonant 4 DOF gyroscope (Acar and

Shkel, 2003). In this device, a 4 degree of freedom

vibrating structure is designed such that the frequency



responses for the drive and sense axis resonators are

flat, yet large, around the operating frequency. This flat

portion of the frequency response is away from the res-

onant frequencies, and thus robust to small variation in

natural frequencies and damping ratios. This design at-

tempts to eliminate mode matching requirements and

minimize instability and drift.

Another novel approach is the parametric resonance

based gyroscope presented by Oropeza-Ramos et al.

(Oropeza-Ramos, 2007; Oropeza-Ramos and Turner,

2005). This device utilizes the broad and flat fre-

quency response of a parametric resonance to produce

a gyroscope that is robust to frequency mistuning and

damping effects. This gyroscope has been successfully

demonstrated in experiments by Oropeza-Ramos et al.

This gyroscope is the only MEMs gyro that utilizes

nonlinear vibration principles known to the authors.

While parametric resonance in MEMs has been pre-

viously studied (Turner et al., 1998; Rhoads et al.,

2005; Turner, 1999), this gyroscope features coupling

of two duffing type resonators with parametric exci-

tation, and the dynamics of this are not fully under-

stood. In this letter, we analyze the response structure

of this gyroscope and show that the parametric reso-

nance provides insensitivity to the frequency match-

ing and quality factor requirements of more conven-

tional devices. Accordingly, in section 2 we present the

model for the device and transform it via averaging into

a form amenable to analysis. In section 3, we consider

the frequency response of the system, and in section 4

we consider the rotation rate response. Conclusions are

presented in section 5.

2 Model

A micrograph image of the gyroscope is shown in fig-

ure 1 (Oropeza-Ramos, 2007). This device consists

of a perforated proof mass constrained to move in the

plane by a suspension of microbeams. It is forced

along one axis, the so called drive axis, by a set of

non-interdigitated comb drives, and its motion along

the other axis, the sensing axis, is detected by a set of

parallel plate capacitors.

In previous work, (Oropeza-Ramos et al., 2007), it has

been shown that this system can be modeled by the set

of ordinary differential equations

mẍ+ cẋ+ [k11 + r1V
2

a (1 + cos(2ωt))]x+

[k31 + r3V
2

a (1 + cos(2ωt))]x3 − 2Ωẏ = 0,

mÿ + cẏ + k12y + k32y
3 + 2Ωẋ = 0.

(1)

Here, x is the displacement along the drive axis, y is

the displancement along the sense axis, m is the sensor

mass, c is the viscous dissipation constant, k11 is the

drive axis linear stiffness, r1 is the linear electrostatic

forcing constant, k31 is the cubic stiffness coefficient,

r3 is the nonlinear electrostatic forcing constant, k12 is

the sense axis linear stiffness, and k32 is the sense axis

Table 1. Nondimensional parameter definitions for equations 2.

HereL represents some characteristic length.

qd = x
L

qs = y
L

τ = t
√

m
k11

εζ = c√
mk11

ελ1 =
r1V 2

a

k11

εν3 = k31L2

k11

ελ3 =
r3L2V 2

a

k11

εγ = 2Ω
√

m
k11

εδ = k12

k11

− 1 εξ = k32L2

k11

nonlinear stiffness coefficient. Ω is the rotation rate of

the gyroscope about the axis normal to the plane of the

gyroscope. In order to reduce the number of free pa-

rameters and facilitate analysis, we nondimensionalize

equations (1). We also take this opportunity to intro-

duce scaling arguments via the small parameter ε.

q′′d + 2εζq′d + [1 + ελ1(1 + cos(2ωτ))]qd+

[εν3 + ελ3(1 + cos(2ωτ))]q3d − εγq′s = 0,

q′′s + 2εζq′s + (1 + εδ)qs + εξq3s + εγq′d = 0.

(2)

The definitions of the nondimensional parameters are

given in table 1. Applying the method of averaging to

these equations produces a set of slowly time varying

differential equations which govern the amplitudes and

phases of the drive and sense axis resonators. To do

this, we assume a near-resonance condition, ω = 1 +
εσ; this results in

a′
1

=
ε

8
[4a2γC12 + a1(−8ζ+

(2λ1 + λ3a
2

1
) sin(2ψ1))],

a′
2

=
−ε
2

[a1γC12 + 2ζa2],

ψ′
1

=
ε

8a1

[−4a2γS12 + a1(4λ1 − 8σ+

3(ν3 + λ3)a
2

1
+ 2(λ1 + λ3a

2

1
) cos(2ψ1))],

ψ′
2

=
ε

8a2

[−4a1γS12 + a2(4δ − 8σ + 3ξa2

2
)],

C12 =cos(ψ1 − ψ2),

S12 =sin(ψ1 − ψ2).

(3)

Here, a1 is the amplitude of oscillation along the drive

axis, and a2 is the amplitude of oscillation along the

sensing axis. ψ1 and ψ2 are the phases of oscillation

for the two axes.

3 Frequency Response Analysis

Unfortunately, these equations do not admit closed

form solutions for the fixed points, and so we are forced

to take a less direct approach. Since we cannot solve

the general system, we solve a simplified case, and then

use those solutions to develop some understanding of



the general case. Accordingly, we consider the slightly

simplified case where the sense axis is linear, and there

is no damping. Hence, ζ = 0 and ξ = 0.

Equations (3), with the aforementioned simplifica-

tions, yield the amplitude solutions

a1 =0,

√

4γ2

δ−2σ
+ 8σ − 6λ1

3ν3 + 2λ3

,

√

4γ2

δ−2σ
+ 8σ − 2λ1

3ν3 − 2λ3

,

(4)

a2 = a1

√

γ2

(δ − 2σ)2
(5)

Though the details are omitted for brevity, equations

(4) and (5) give a frequency response solution that has

four branches departing from the zero solution at fre-

quencies described by the detuning values

σ1,2 =
1

4

(

δ +
3λ1

2
±
√

4γ2 + (δ − 3λ1

2
)2

)

σ3,4 =
1

4

(

δ +
λ1

2
±
√

4γ2 + (δ − λ1

2
)2

)

Again, the detuning values, σ, are related to the forcing

frequency by ω = 1 + εσ. This can be seen in fig-

ure 2, where the response for a gyroscope with a hard-

ening drive axis, linear sense axis, and zero damping

is shown. In this, and all other figures in this letter,

heavy solid lines respresent stable fixed points, light

dashed lines represent unstable fixed points. The pa-

rameters chosen for this plot represent a gyro with the

dimensional parameters given in table 2. The direc-

tion in which these branches bend can exhibit harden-

ing, softening, or mixed behavior, depending on me-

chanical and electrostatic nonlinearities. The mechani-

cal nonlinearity is typically hardening, but the electro-

static nonlinearity can be either hardening or softening,

depending on the alignment of the noninterdigitated

combs, see figure 1. In this letter, we consider only

hardening behavior since neither mixed nor softening

behavior offer any additional benefit. The frequency

response for a gyroscope with a hardening drive axis

will conform to the structure of the response shown in

figure 2. The solutions branching from σ1,3 (those on

the left) are separated from those branching from σ2,4

(those on the right) by a vertical asymptote at σ = δ
2

,

the location of the sensing axis resonance.

Considering the response structure shown in figure 2,

we can make a qualitative argument explaining why

this gyroscope is robust to frequency mistuning be-

tween drive and sense axis resonators. The drive axis

response is approximately a parametric resonance fre-

quency response structure, and the sensing axis re-

sponse is approximately the product of the paramet-

ric resonance frequency response and the linear fre-

quency response of the sensing resonator. Figure 3

Figure 2. Frequency response for gyroscope with linear sense axis

and zero damping, ζ = ξ = 0, under rotation Ω = 160Hz.

Table 2. Dimensional gyroscope parameters for example plots

m = 1.4e− 8 kg fd = 10.244 kHz

fs = 10.361 kHz k3 = 0.12 µN
µm3

r1 = −3.9e− 4 µN
µmV 2 r3 = −9.9e− 6 µN

µm3V 2

ε = 0.001 L = 1µm

shows, in the drive axis plot, the frequency response

with a parametric resonance response superimposed.

The response structure of the drive axis resembles that

of parametric resonance, though it is split, so to speak,

at natural frequency of the sensing axis resonator. This

splitting occurs as a result of the coupling between the

resonators. The effect of the coupling becomes dra-

matic when the response of the sensing resonator be-

comes large, as it does near resonance. Furthermore,

the frequency response of the sensing axis closely re-

sembles the product of a parametric resonance fre-

quency response and a linear frequency response. The

sense axis plot in figure 3 shows such a product super-

imposed on the sense axis frequency response. From

these observations, we can argue that the response of

sensing resonator will be large as long as its natu-

ral frequency lies in the frequency range of the drive

axis’s parametric resonance. This frequency range ap-

pears in figures 2 and 3, to persist for all frequencies

greater than the drive axis natural frequency. This is

because we have not included nonlinear damping in

our model, for simplicity. The reader should bear in

mind that these non-zero frequency response structures

will terminate eventually due to nonlinear damping ef-

fects. However, the qualitative nature of these results

do match that of the experimental results in the fore-

mentioned works. Currently, damping studies have not

yet been performed experimentally, and so the verifi-

cation of this simplifying assumption is left to future

work.

Since parametric resonance offers a wide and flat res-

onance structure, small changes in the sensing axis’s

natural frequency will affect the amplitude of the re-



Figure 3. Gyroscope frequency response, as in figure 2, with para-

metric resonance response overlay (in light gray) on drive axis and

linear system response to parametric resonance overlay (in light gray)

on sense axis.

Figure 4. Frequency response for gyroscope with zero damping,

ζ = 0, under rotation rate Ω = 160Hz.

sponse very little. Consequently, as long as the sense

axis natural frequency lies in this range, the resulting

sense response will also be relatively unaffected. This

is a somewhat simplified view of things, but it certainly

does illustrate why this gyroscope is robust under fre-

quency mistuning between the drive and sense axis res-

onators.

In order to extend this analysis to the general system,

consider the effects of nonlinearity on the sensing res-

onator. A hardening nonlinearity will bend the sensing

resonator’s frequency response to the right. This effect

is amplitude dependant and so, we expect the branch

that follows the vertical asymptote to bend. The low

amplitude structure, however, should remain nearly the

same. The branch points in particular should not be af-

fected at all. Also, we expect to see these changes in the

sensing resonator’s response reflected in the drive res-

onator’s response. Indeed, this is what happens. Figure

4 shows the frequency response for the gyroscope with

the hardening nonlinearity included in the sensing res-

onator (ξ 6= 0).

Nonlinearity in the sensing resonator bends the fre-

quency response structure so that both drive and sense

axis resonator’s have frequency responses similar to

a single duffing equation under parametric resonance.

Figure 5. Frequency response for gyroscope with damping, ζ =
0.1, under rotation rate Ω = 20.38Hz.

The major difference here, however, is the existence

of this second lower amplitude solution. Since dis-

sipation in a duffing resonator under parametric ex-

citation changes the frequency response only a small

amount (Oropeza-Ramos and Turner, 2005), we expect

that these response structures will not change much in

the presence of damping. Figure 5 shows the same

frequency response with small damping added. The

higher amplitude branches are mostly unaffected, but

the lower amplitude branch is nearly destroyed. For

large damping values, this branch will be completely

destroyed.

The focus of this analysis is on stable periodic solu-

tions of the gyroscope equations of motion, equations

(1), or equivalently, stable fixed points of the average

equations, equations (3). Accordingly, we did not fol-

low any branches of periodic solutions in the average

equations. However, it turns out that the small window

of instability that appears on the zero solution branch

around 10.29 kHz is the result of a Hopf bifurcation. It

is currently unclear if this feature is a cause of concern.

The current experimental results have not reported any

quasiperiodic or other nonperiodic behaviors.

4 Rate Response Analysis

The frequency response of this gyroscope, particularly

with hardening sensing resonator, offers a large range

of operating frequencies which provide large response

amplitudes. Let us consider how these operating points

change with rotation rate. For the simplified system,

equations (4) and (5) provide the answer directly. Ad-

ditionally, a qualitative understanding of the rate re-

sponse structure can be obtained by considering lim-

iting cases of the equations. These equation show that

when

4γ2

δ − 2σ
� 8σ − 6λ1 (6)

or

4γ2

δ − 2σ
� 8σ − 2λ1, (7)



Figure 6. Rotation rate response for gyroscope with linear sense

axis and zero damping, ζ = ξ = 0. Drive frequency F =
2πω = 10.2952kHz

then

a1 ∝ γ, a2 ∝ γ2. (8)

Here, a1 and a2 represent the drive and sense axis so-

lution branches that correspond with the appropriate

relative magnitude statement, (6) or (7). Accordingly,

figure 6 shows the amplitude solutions for the simpli-

fied system with respect to spin rate. In this figure,

we see that, for large spin rate, the dive axis ampli-

tude is nearly linear and the sense axis amplitude nearly

quadratic. Similarly, when

4γ2

δ − 2σ
� 8σ − 6λ1 (9)

or

4γ2

δ − 2σ
� 8σ − 2λ1, (10)

then

∂a1

∂γ
≈ 0, a2 ∝ γ. (11)

Thus, in figure 6, we see that, for small Ω, the drive

axis amplitude is constant, and the sense axis is ampli-

tude is linear. Figure 6 shows the rate response of the

simplified gyroscope for a frequency below the natural

frequency of the sense axis resonator. If we consider

the rate response for a frequency above the sense axis’s

natural frequency, we find a rate response like the one

shown in figure 7. In this case, the nonzero rate re-

sponse exists in a finite range which depends on the

frequency of operation, and it does not posses a stable

solution over that entire range. Clearly, such a mode of

operation is not amenable to rate sensing.

For the general system, we cannot produce equations

that give the rate response explicitly as for the simpli-

fied system. However, for the system without damping

Figure 7. Rotation rate response for gyroscope with linear sense

axis and zero damping, ζ = ξ = 0. Drive frequency F =
2πω = 10.4489kHz

(ζ = 0), we can gain some insight into the rate response

by considering limiting cases similar to the above. For

the zero damping case, equations (3) yield two polyno-

mials in a1 and a2 respectively, whose roots describe

the fixed points of the averaged system. For the sake of

brevity, the details are omitted, but suffice it to say that

these polynomials are of the forms

a1P1,4(a
2

1
) = 0,

a2P2,4(a
2

2
) = 0.

(12)

Here, P1,4 and P2,4 are the fourth order polynomials

associated with a1 and a2 respectively. Equation (12)

shows, naturally, that a1 = 0 and a2=0 are solutions.

More interestingly is the result that for the limiting case

of small, O(ε), amplitude and spin rate, the amplitudes

depend linearly on spin. Thus,

a1 ∝ γ, a2 ∝ γ. (13)

For the limiting case of large amplitude, O(ε−1), and

larger spin rate, O(ε−2), the amplitudes depend on the

square root of the spin rate. Hence,

a1 ∝ √
γ, a2 ∝ √

γ. (14)

Accordingly, in figure 8, which corresponds to the

same operating conditions as in figure 6, except here

the sense axis stiffness is nonlinear, we find that for

small spin rate, a2 is linear with respect to spin. a1 is

not, however. This is because a1 is not small. Also,

for large spin rates, both amplitudes are large and vary

with the square root of the spin rate.

Interestingly, If we examine the rate response for the

same operating point as in figure 7, except now includ-

ing the nonlinear sensing stiffness, we find a more com-

plex structure with additional solution branches. This is

shown in figure 9. Additional solution branches are to

be expected. This can easily be seen by a comparison of



Figure 8. Rotation rate response for gyroscope with nonlinear sense

axis and zero damping, ζ = 0. Drive frequency F = 2πω =
10.2952kHz

Figure 9. Rotation rate response for gyroscope with nonlinear sense

axis and zero damping, ξ = 0. Drive frequency F = 2πω =
10.4489kHz

the frequency responses, at the appropriate frequency,

for the cases of a linear and nonlinear sense axis: fig-

ures 2 and 4 respectively. The stability of the nonzero

solutions has also changed from the linear case, show-

ing that operating above the sense axis linear natural

frequency is possible when the sense axis resonator is

nonlinear.

5 Conclusions

In this letter, we present analysis of a nonlinear MEMs

gyroscope which operates on parametric resonance in

duffing type resonators. The coupling of two duff-

ing resonators forced by parametric excitation produces

a complex system which is not very amenable to di-

rect formulations for the steady state solutions. Conse-

quently, we approached this analysis by considering the

simplified case of an undamped parametrically forced

duffing resonator coupled to an undamped linear res-

onator. We then extended this solution to the complete

case obtaining qualitative information and limiting be-

havior for the response structure. We also produced

numerical solutions to support our findings. This work

provides useful analysis for design and evaluation of

this gyroscope design, though it still needs to be corre-

lated in a systematic way to experimental results.
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