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Abstract 
 
We investigate the characteristics of the 

instantaneous phases and amplitudes of the wavelet 
coefficients applied to the fluctuating wall shear stress 
and longitudinal velocity in the low buffer layer of a 
fully developed turbulent boundary layer. We show 
that the instantaneous phase exhibit long quiescent 
periods of constant values separated by sudden phase 
jumps. We establish a similarity with the stochastic 
synchronization of chaotic systems in the presence of 
noise that plays a role similar to the incoherent 
turbulence. We analyze the statistical characteristics 
of the constant phase periods and show the existence 
of type-I intermittency of the constant phase lengths 
related to a saddle-node bifurcation of the unstable 
periodic orbit embedded in the wall turbulent 
attractor. The period of the later is closely related to 
that of the cyclic regeneration of shear stress 
producing eddies. 
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1 Introduction 
The discovery of coherent structures in the early 
1960’s has profoundly modified our point of view of 
the wall turbulence structure. The pioneer work of 
Kline et al.1, based on flow visualizations has revealed 
the existence of quasi-cyclic events, ordered in time 
and space, and largely contributing to the Reynolds 
shear stress production. Later, both experimental2,3, 
and numerical4 works have been devoted to the 
characterization of the wall coherent structures and 
several hundreds of papers related directly or 
indirectly to this topic have been published in the last 
four decades. The “incoherent” turbulence occupies 
only 20% of time and space in the inner layer. The 
coherent part is simpler to understand, since the 
coherent vortical structures can be identified, and 

tracked in time and space5, and their direct effect on 
the wall shear and transport of the shear stresses and 
passive scalar can be clearly determined. The 
common consensus reached by now points at the 
existence of quasi-streamwise vortices of diameters 
typically 10 wall units and located at 20 units from 
the wall. Their streamwise extend is roughly 300 
units, and they generate low and high speed streaks at 
the wall with a spanwise periodicity of 100 wall units. 
The sweep and ejection events they generate 
contribute to the Reynolds shear stress by 80%. The 
time period of their generation is approximately 100 
units also and it depends on the distance from the wall 
6,7. 
 Turbulence in general and the wall 
turbulence in particular can be seen as an infinite 
dimensional chaotic system. The quasi-periodicity 
induced by the coherent structures that are convecting 
in the low buffer layer, should logically lead to the 
synchronization of the turbulent quantities near the 
wall. Chaos synchronization is a process wherein 
chaotic coupled (sub)systems subject to external 
forcing adjust their time scales resulting in common 
spatial and temporal dynamics (Boccaletti et al.8, 
Pikovsky et al9). Synchronization can also be defined 
as the locking between the instantaneous phases of a 
state variable of the system and the phase of the 
external periodic force. Several types of 
synchronization such as identical synchronization, 
phase synchronization, lag and generalized 
synchronization can be distinguished10. A rather weak 
degree of wall turbulence synchronization is expected 
in a rush environment partially dominated by 
incoherence. The weaker synchronization between 
chaotic systems, namely the phase synchronization 
occurs when the suitably well-defined phases 
collapse, while the amplitudes remain highly 
uncorrelated. Furthermore, in the case of chaotic 
systems having a broad range of time scales, the 
phases do not perfectly synchronize, but 
synchronization periods are interrupted by 
intermittent phase slips. The average duration 
between phase slips increases and becomes infinite as 
the coupling strength or driving frequency becomes 



closer to the critical transition point of 
synchronization of self-sustained periodic oscillators. 
In the presence of noise, or of incoherence as in the 
case of the wall turbulence, the lengths of laminar 
segments whether in or outer synchrony are random. 
The noisy synchronization is commonly defined as 
stochastic synchronization, and the phase locking 
occurs for random periods of times and is interrupted 
by random phase slips11,12,13. The synchronization of 
the wall turbulence driven by coherent vortices 
advecting in the low buffer layer, if it occurs, should 
be classified in this last category. 
 Special techniques are necessary to detect the 
synchronization, which is generally hidden in phase 
synchronization of chaotic systems and in stochastic 
synchronization that is further difficult to depict. We 
apply the instantaneous amplitude phase concept to 
the scale decomposed turbulent quantities in the 
present investigation. The scale decomposition is 
obtained through wavelet analysis. The instantaneous 
phase concept is widely used in the theory of 
nonlinear oscillations and waves and in 
communication theory14. It has also been applied to 
the phase synchronization phenomena in coupled 
chaotic systems15. It is however not efficient without 
the scale decomposition in the synchronization 
analysis of the wall turbulence.  

Dynamical systems approach of the wall 
turbulence is far being new16, but we believe that the 
results presented in this paper are rather original for 
our community. Synchronization means existence of 
unstable periodic orbits. Besides its attractivity from a 
fundamental point of view, synchronization concept 
may be useful to develop new strategies of wall 
turbulence control in parallel with chaos control17. 
Thus, small time-dependent perturbations may be 
introduced in the system parameters to improve a 
desired response, such as drag reduction or mixing 
enhancement. 

The paper is divided into four parts. The 
experiments we performed are described in the next 
session. The session 3 is devoted to detailed data 
analysis technique we used. The results are presented 
in the session 4. 
 

2 Experiments 
The ensemble of the measurements reported 

here have been realized in the low speed wind tunnel 
of LEGI. The boundary layer and momentum 
thickness at the test section were respectively 

! 

" = 34mm  and 

! 

" = 3.4mm . The Reynolds number 
based on the local momentum thickness is 

! 

Re" = 913 , 
while the free stream velocity was 

! 

U" = 4m / s   
 

3 Data analysis 
The window average gradient scheme (WAG) was 
introduced by Antonia and Fulachier19 and widely 
used in studies dealing with different flow 
configurations for example in Antonia et al.20 and 
Krogstad and Antonia21. This scheme has been 

developed to detect the discontinuities in the 
fluctuating velocity signals and mainly been applied 
to wall bounded flows, although not exclusively. The 
continuous version of the WAG detection scheme is 
defined through a moving window of width 

! 

2Tw  and 
the data is transformed into: 
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2Tw
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t"T
w

t
#

t

t+T
w#( )         (1) 

 
where 

! 

u(t)  is the fluctuating turbulent velocity signal. 
It can be easily seen that, 

! 

W t,T w( )  is the output of a 
linear  system whose transfer function 
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hW t( )  is 
defined by: 
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and 

! 

hW t( ) = 0  otherwise. Therefore, 

! 

W t,T w( ) = u t( ) " hW t( ) , where 

! 

"  stands for the 
convolution operator. Since the input-output 
relationships of a linear system are determined 
through the deterministic autocorrelation function 
defined as the convolution: 

! 

"W t( ) = hW t( ) # h
*
W $t( )           (3) 

where the superscript * indicates the complex 
conjugate. 
The wavelet transform 

! 

" k, t( )  of the signal 

! 

u t( )  is 
defined by: 

! 

" k, t( ) = k u t( ) # g $kt( )            (4) 
where 

! 

g t( )  is the mother wavelet.  The wavelet 
transform is covariant under time translation and scale 
change. It conserves the energy of the signal and is 
invertible provided that the admissibility condition is 
satisfied.  
   The window averaged gradient scheme defined in 
(1) is per se a wavelet transform since its transfer 
function 

! 

hW t( )  is admissible. It is indeed closely 
related to the Haar transform which is the simplest 
wavelet used in multiresolution analysis.   
 Any signal, moreover the wavelet coefficients 

! 

" k, t( )  may be expressed as: 

! 

" k, t( )= r k, t( ) cos # i k, t( )
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                         (5) 

where 

! 

r k, t( )  stands for the instantaneous amplitude 
and 

! 

" i k, t( )  is the instantaneous angular frequency 
at scale 

! 

k . This representation is not unique and 
different characterizations are possible, depending 
upon the choice of the dual processes. In the Rice 
canonical representation that is optimum in the sense 
of minimizing the average rate of the signal envelope, 
one has: 

  

! 

r
2
k, t( )=" 2

k, t( )+
( 
" 2 k, t( )          (6) 

by using the Hilbert transform   

! 
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"  of 
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" , and: 
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where ' denotes the time derivative. The 

corresponding optimum carrier frequency, equals: 

! 

" c k( )=
r
2
k, t( )" i (k, t )

r
2
k, t( )

         (8)
 

with 

! 

" k, t( )  being the random phase at scale k. 
 

4 Results 
A snapshot of the instantaneous phase 

! 

" k
+
, t

+( )  

and amplitude 

! 

r
+

k
+
, t

+( )  of the fluctuating 

streamwise velocity signal 

! 

" u  at 

! 

y
+

=10 is shown in 
Fig.1 for the wavelet scale parameter 

! 

k
+

= 0.24  
(corresponding to the wavelet window duration 

! 

T
W

+
= 26). It is recalled that the wavelet scale 

parameter  

! 

k
+ is defined as 

! 

k
+

=
2"

TW
+

 . The optimum 

angular carrier frequency is 

! 

" c

+
= 0.07 in Fig.1. It is 

seen that the instantaneous phase 

! 

" k, t( )  consists of 
line segments that are discontinuous at points B and D 
where random phase jumps occur. The phase 
increases first at A-B, remains constant during a large 
period C-D, jumps again and increases at D-F. The 
constancy of the phase indicates that the instantaneous 
frequency is roughly equal to the carrier frequency. 
The periods like C-D wherein 

! 

" i #" c  coincide 

generally with large amplitudes 

! 

r
+

k
+
, t

+( ) . Strong 

ejection-sweeps transitions marking the arrival of 
coherent structures are, therefore, merely constant 
phase events. The time intervals as A-B wherein 

! 

" k
+
, t

+( )  increases while 

! 

r
+

k
+
, t

+( )  decreases 

are reminiscent of apparition of small scales. The slop 

of A-B is 

! 

d" +

d t
+

=
# c

+

3
 indicating that 

! 

" i (k, t )  is 

jumped by a factor 4/3. The jumps in frequency with 
the same fraction of 

! 

" c

+  are often and repetitively 
observed. The epochs as E-F, wherein both the 
instantaneous phase and the amplitude increase from 
small values, are presumably related to the arrival of 
smaller scale active structures. Note finally that, the 
duration of the segments is about 100-200 wall units 
that is close to the ejection (bursting) period in the 
low buffer layer 6,7. 
 The occurrence of these long periods is 
particularly interesting. They refer to the set-up of 
stochastic synchronization, and appearance of 
“laminar” periods8 wherein the instantaneous 
frequency locks to the mean carrier frequency. The 
locking frequency corresponding to Fig. 1 is 

! 

fc
+

=
"c

+

2#
= 0.011 which is precisely the median 

ejection frequency at 

! 

y
+
" 15 where the production 

reaches its maximum7. The physical interpretation of 
the occurrence of constant phase zones is related to 
the phase synchronization between the wall turbulent 
quantities and the forcing imposed by the coherent 
vortices generated and convecting near the wall. For 
phase synchronization of coupled chaotic oscillators 
with type-I intermittency, as it will be discussed in 
detail in the fallowing, a very large constant phase 
locked zone is fallowed by a very short turbulent 
stage (the turbulent stage here refers to periods 
wherein the signal is chaotic according to the 
terminology used in chaos synchronization). The 
difference here, is that, not only the duration of phase 
locked zones is random, but also that the phase 
smoothly fluctuates before sharp increases or phase 
jumps. Furthermore, zones like A-B wherein the 
phases increase do not exist in the case of coupled 
chaotic oscillators, that are subject to quiescent 
periods fallowed by rapid phase slips. This behaviour 
is due to the stochastic nature of the turbulence that is 
under the effect of incoherence. High frequency phase 
fluctuations superimposed on the low-pass segments 
are for example seen in the bottom of Fig.1. Their 
time scale 

! 

ts
+  is of the order of 

! 

TW
+ in this particular 

case. The high frequency components in 

! 

" k, t( )  affect 
only slightly the integral 

! 

"i k, t( )
0

t
D

# dt ="c k( )tD + d$ k, t( )
0

t
D

# dt  as long as 

! 

ts  is 

small compared to the time scale 

! 

tD  of the low-pass 
components.  

 
The smooth temporal variations of the local 

amplitudes and phase synchronization of intermittent 
oscillations observed in Fig. 1 and 2 points at the 
existence of intermittency of some type where a large 
quiescent period is changed by very short duration 
jumps, until the next laminar stage. In the case of 
coupled chaotic oscillators, the phase synchronization 
coincides with a saddle-mode bifurcation and the 
intermittency just outside the synchronization zone is 
characterized by a type-I intermittency8, 25,26. 
Frequency synchronization is a matter of adjusting 
time-scales by interaction and can be established 
when the system is shifting among different time-
scales and while the chaotic trajectories access to 
different unstable periodic orbits. In the case of 
perfect phase synchronization the average duration 

! 

T l  
of the phase locking regions separated by successive 
phase slips scales as: 

! 

T l " C #Cps

#$
             (9) 

where 

! 

C  is either the coupling strength or the 
frequency (wave number) of the driving signal. The 
exponent 

! 

" > 0  is 

! 

" = 1 in the case of on-off 

intermittency, and 

! 

" =
1

2
 for the type I intermittency. 

The parameter 

! 

Cps  is the critical value of the phase 



synchronization. Thus, infinitely long time periods of 
constant phase are expected in perfect 
synchronization as the driving parameter 

! 

C  becomes 
close to the critical 

! 

Cps . Such super long periods 
have for example been reported in chaotic Rössler 
oscillator driven by external forcing26 . The type-I 
intermittency is connected to the saddle-node 
bifurcation whose universal form is 

! 

dx

dt
= C "Cps( ) + x2 . The time 

! 

Tl  for the system to 

move from 

! 

x = 0 to 

! 

x"# reads  for: 

! 

Tl "
dx

C #Cps( ) + x20

$

% =
&

2
C #Cps

#1/ 2
      (10)  

where it is clearly seen that 

! 

" =
1

2
. In stochastic 

systems with incoherent turbulence (IT), it is 
impossible to observe perfect synchronization, 
similarly to noisy non-identical chaotic systems, The 
constant phase zones, interrupted by IT induced phase 
slips, are of finite length. The identification of phase 
synchronization in such systems is performed by 
computing the phase difference 

! 

"#  that represents a 
pronounced peak near 

! 

"# = 0  (Boccaletti et al.,8, p. 
61). However, according to Freund et al.22 the 
identification of synchronization in the presence of 
noise is possible by quantifying the average duration 

! 

T l  of locking epochs. Fig. 6 shows the distribution of 

relative phase constant zones occupancy 

! 

" =
T l

Ttotal

 

versus 

! 

k
+. It is seen that 

! 

"  goes through a well 

defined maximum at 

! 

k
*
+

= 0.25 and 

! 

k
*
+

= 0.20 for 
respectively 

! 

" u  at 

! 

y
+

= 10  and 

! 

" # , and decreases for 
larger and smaller wavelengths. This behavior points 
at some kind of intermittency. The maximum of 

! 

"  is 
roughly 0.4 for 

! 

" #  and slightly smaller for 

! 

" u . Fig. 7 
shows 

! 

ln"  versus 

! 

ln k
+
" k

*+ . It is clearly seen that 

the type I intermittency with 

! 

" # k
+
$ k

*+
$1/ 2

 holds 

reasonably well for 

! 

k
+
" k

*+
# 0.14 . The lines with 

! 

"
1

2
 slopes shown in Fig. 7 have been obtained 

through a regression analysis resulting in regression 
coefficients equal to 0.97.  The deviation from the 
type I intermittency behavior takes place near the 
coupling wavelength 

! 

k " k
*. This is expected since 

! 

T l  should go to infinity at 

! 

k = k
* in perfect 

synchronization which is incompatible with the 
stochastic synchronization that is under the effect of 
incoherent turbulence. 
    Synchronization points at unstable periodic orbits 
(UPO) in chaotic systems. The spatiotemporal 
coherence in wall turbulence should presumably be 
given in one or more unstable periodic orbit 
embedded in turbulent attractors. The UPO’s have 
recently been identified in Couette turbulence by 
Kawahara et al27. The periodic orbit they identified is 
of saddle nature, which is in agreement with the I-

type intermittency observed here. The period of the 
UPO’s they identified is 

! 

TUPO
+

= 188 . A directly 
similar investigation does not exist in the case of fully 
developed turbulent channel flow. It is furthermore 
difficult to determine the period of the UPO’s from 
the analysis conducted here. An estimation can 
however be given by using the carrier frequency at the 
coupling wavelength 

! 

k = k
*. Curiously, both the 

fluctuating wall shear stress and the instantaneous 

velocity at 

! 

y
+

= 10  gives sensibly 

! 

TUPO
+

=
2"

#c
+

= 90  

at 

! 

k = k
*, which is nothing but once more the median 

ejection period in the low buffer layer. 
 

5 Conclusion 
A scale-instantaneous phase/amplitude representation 
of the near wall turbulence is introduced. The Rice 
representation is applied to the wavelet coefficients of 
the fluctuating wall shear stress and longitudinal 
velocity in the law buffer layer. The analytic signal 
concept causes an automatic separation of different 
time scales. This is due to the property of the Hilbert 
transformation to freeze slow variables. This, 
combined with the wavelet transform allows the 
analysis of separate scales and sorts out the hidden 
phase synchronization. Long quiescent periods of 
about 100 wall units length wherein the instantaneous 
phase is smoothly oscillating around constant values 
are noticed near the critical scale parameter. The 
constant phase zones are interrupted by rapid phase 
jumps. A parallelism is constructed between these 
behaviors and the stochastic synchronization of 
chaotic systems that are under the effect of noise, or 
incoherence as is the case of the near wall turbulence. 
The stochastic synchronization is caused by 
convecting coherent vortical structures near the wall. 
The detailed analysis of the data revealed the 
existence of type-I intermittency connected to the 
saddle-node bifurcation of the locking periods. The 
period of the unstable periodic orbit embedded in the 
turbulent attractor near the wall collapses well with 
that of the regeneration cycle of the coherent 
structures. 
  The occurrence of long quiescent periods of constant 
phases of the wavelet coefficients is interesting and 
may be used in some control strategies. The phase 
jumps in particular are unambiguously well defined 
near the critical wavelet scale parameter. The long 
time periods between the jumps annunciate the arrival 
of active structures. A gain in effectiveness may 
presumably be achieved if the decision and action 
stages of active control schemes coincide with these 
periods. 
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Figure 1 Samples of the instantaneous amplitude (continuous line) and phase (thick line) in radians of the WAG 
(Haar) wavelet coefficients of the fluctuating streamwise velocity at 

! 

y
+

= 10  versus time .The scale parameter of 
the wavelet transform is 

! 

k
+

= 0.24  in wall units.CD: Constant phase zone wherein the instantaneous frequency is 
equal to the carrier frequency. AB: The phase increases while the amplitude decreases: Apparition of small-scale 
structures. EF: The phase and amplitude increase simultaneously: Small-scale amplitude variations. DE: Phase 
jump. FG: Constant phase zone. 
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Figure 2 Relative occupancy versus wavelet scale parameter in log-log representation showing the existence of 
type-I intermittency. The triangles refer to the Mexican wavelet applied to the wall shear stress fluctuations. 
 


