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Slovak University of Technology, Faculty of Electrical Engineering
and IT, URPI, Bratislava, Slovak Republic, E-mail :

vojtech.vesely@stuba.sk

Abstract: The paper addresses the problem of designing a parameter dependent
quadratic stability output/state feedback model predictive control for linear polytopic
systems without constraints.

Keywords: Model predictive control, Robust Control, Parameter dependent
quadratic stability, Lyapunov function, Polytopic system

1. INTRODUCTION

Model predictive control (MPC) has attracted
notable attention in control of dynamic systems.
The idea of MPC can be summarized as follows,
(Camacho and Bordons, 2004; Maciejovski, 2002,
Rositer, 2003):

• Predict the future behaviour of the process
state/output over the finite time horizon.

• Compute the future input signals on line
at each step by minimizing a cost function
under inequality constraints on the manipu-
lated (control) and/or controlled variables.

• Apply on the controlled plant only the
first of vector control variable and repeat
the previous step with new measured in-
put/state/output variables.

Therefore, the presence of the plant model is a
necessary condition for the development of the
predictive control. The success of MPC depends
on the degree of precision of the plant model.
In the most references the principal shortcoming
of existing MPC-based control techniques is their
inability to explicitly incorporate plant model un-
certainty, Kothare et al, 1996. Thus, the present
state of robustness problem in MPC can be sum-
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marized as follows:
Analysis of robustness properties of MPC.
Zafiriou nad Marchal, 1991 have used the contrac-
tion properties of MPC to developed necessary-
sufficient conditions for robust stability of MPC
with input and output constraints for SISO sys-
tems and impulse response model. Polak and
Yang, 1993 have analyzed robust stability of MPC
using a contraction constraint on the state.
MPC with explicit uncertainty description.
Zheng and Morari, 1993, have presented robust
MPC schemes for SISO FIR plants, given un-
certainty bounds on the impulse response co-
efficients. Some MPC consider additive type of
uncertainty, de la Pena et al, 2005 or paramet-
ric (structured) type uncertainty using CARIMA
model and linear matrix inequality, Bouzouita et
al, 2007. In Lovaas et al, 2007 for open-loop stable
systems having input constraints the unstructured
uncertainty is used. The robust stability can be
established by choosing the large value for the
control input weighting matrix R in the cost func-
tion. The authors proposed a new less conserva-
tive stability test for determining a sufficiently
large control penalty R using bilinear matrix in-
equality (BMI). The other technique- constrained
tightening to design of robust MPC have been
proposed in Kuwata et al, 2007. Above approaches
are based on idea of increasing the robustness



of the controller by tightening the constraints of
the predicted states. The mixed H2/H∞ control
approach to design of MPC has been proposed
by Orukpe et al, 2007. Robust constrained MPC
using linear matrix inequality (LMI) have been
proposed by Kothare et al,1996 where the poly-
topic model or structured feedback uncertainty
model have been proposed. The main idea of
Kothare et al, 1996 is used of infinite horizon
control laws which for state feedback guarantee
nominal stability.
In this paper the neccessary and sufficient robust
stability conditions for MPC described as the
polytopic system with output feedback with one
step ahead horizon have been developed for gen-
eralized parameter dependent Lyapunov matrix
P (α). The proposed robust MPC ensures param-
eter dependent quadratic stability (PDQS) and
guaranteed cost. The developed neccessary and
sufficient robust stability conditions for concrete
parameter dependent Lyapunov function reduces
to sufficient ones and for robust stability analysis
of MPC they are in the form of the set of LMIs.
For robust MPC design which guarantes PDQS
with guaranted cost the developed necessary and
sufficient robust stability conditions for concrete
parameter dependent Lyapunov function reduces
to sufficient ones with bilinear matrix inequality.
The paper is organized as follows: Section 2
present a preliminaries and problem formulation.
In Section 3 the main results are given and finally,
in Section 4 the simple example using Yalmip BMI
solvers shows the effectiveness of the proposed
method.

2. PROBLEM FORMULATION AND
PRELIMINARIES

We are given a time invariant linear discrete-time
system

x(t + 1) = A(α)x(t) + B(α)u(t) (1)

y(t) = Cx(t)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are
state, control and output variables of the system,
respectively; A(α), B(α) belongs to the convex set

S = {A(α) ∈ Rn×n, B(α) ∈ Rn×m} (2)

{A(α) =

N
∑

j=1

Ajαj B(α) =

N
∑

j=1

Bjαj , αj ≥ 0}

j = 1, 2...N,

N
∑

j=1

αj = 1

Matrix C is known matrix of corresponding di-
mension. Consider the region of the complex plain
defined by

D = {z ∈ C : R11 + R12z + RT
12

z∗+} (3)

{+R22zz∗ < 0}

where R11 = RT
11

∈ Rd×d and R22 = RT
22

∈ Rd×d

are submatrices of matrix R0 such that

R0 =

[

R11 R12

RT
12

R22

]

(4)

and d is called the order of region. It is assumed
that R22 is positive semidefinite (definite) matrix,
for detail see Peaucelle et al, 2000. Typical region
in stability analysis of discrete-time system is the
unitary disk centered at the origin by the following
choice of R0

R0 =

[

−1 0
0 1

]

(5)

Lemma 1
Closed-loop system matrix of discrete-time system
(1) is robustly D-stable if and only if there exists a
symmetric positive definite parameter dependent
Lyapunov matrix P (α) such that

R11P (α) + R22Am(α)T P (α)Am(α) ≤ 0 (6)

where Am(α) is the closed-loop system matrix for
system (1).
The problem studied in this paper is to derive
a parameter dependent quadratic stability con-
ditions for output one step ahead robust model
predictive controller when control algorithm is
given as folows

u(t) = F1(y(t) − w(t))+ (7)

F2(y(t + 1) − w(t + 1))

A cost function to be minimized is given as follows

J =
∞
∑

t=0

J(t) (8)

where

J(t) = (y(t) − w(t))T Q1(y(t) − w(t))+

(y(t + 1) − w(t + 1))T S1(y(t + 1) − w(t + 1))+

u(t)T Ru(t)

and Q1, S1, R are positive definite matrices of cor-
responding dimensions.
Definition 1
Consider the system (1). If there exists a control
algorithm u(t)∗ and a positive scalar J∗ such that
the closed-loop system for (1) and (7) is stable
and closed-loop value cost function (8) satisfies
J ≤ J∗, then J∗ is said to be guaranteed cost and
u(t)∗ is said to be guaranteed cost control law for



the system (1).
Substituting control algorithm (7) to (1) one ob-
tains

x(t + 1) = Am(α)x(t)− (9)

Bm(α)(F1w(t) + F2w(t + 1))

vhere

Am(α) = (I − B(α)F2C)−1Ac(α)

,

Bm(α) = (I − B(α)F2C)−1B(α)

and Ac(α) = A(α) + B(α)F1C. Because the vec-
tors w(t), w(t+1) are independent from vectorx(t)
and if vectors w(t), w(t + 1) belong to the class of
L2 stability and robustness properties of closed-
loop system (9) are determined by the closed-loop
system matrix of Am(α). The origin of the state
vector x(t) has to be recalculated to a new steady
state given by the setpoint vectors w(t), w(t +
1). Due to Lyapunov function approach and new
recalculated state vector origin below we assume
that w(t) = w(t + 1) = 0.
Lemma 2
Consider the system (1) with control algorithm
(7). The control algorithm (7) is the guaranteed
cost control law for the closed-loop system if and
only if the following condition holds

Be = Am(α)T P (α)Am(α) − P (α) + Q+(10)

Am(α)T SAm(α)+

(F1C + F2CAm(α))T R(F1C + F2CAm(α)) ≤ 0

where Q = CT Q1C,S = CT S1C.

3. MAIN RESULTS

Main results of this paper can be summarized in
the following theorem.
Theorem 1.
The closed -loop system (9) is parameter depen-
dent quadratically stable with parameter depen-
dent Lyapunov function V (t) = x(t)T P (α)x(t) if
and only if there exits matrices N1, N2, F1, F2 such
that the following bilinear matrix inequality holds.

Be =

[

M11 M12

MT
12

M22

]

≤ 0 (11)

where

M11 = NT
1

Ac(α) + Ac(α)T N1 − P (α)+

Q + CT FT
1

RF1C

M12 = NT
1

Mc(α) − Ac(α)T N2 + CT FT
1

RF2C

M22 = −NT
2

Mc(α) − Mc(α)T N2 + S+

CT FT
2

RF2C

Mc(α) = B(α)F2C − I

Note that (11) is affine with respected to α.

Substituting (2) and P (α) =
∑N

i=1
αiPi to (11)

for the polytopic system the following BMI is
obtained

Be =

[

M11i M12i

MT
12i M22i

]

≤ 0 i = 1, 2, ...N (12)

where

M11i = NT
1

Aci + AT
ciN1 − Pi+

Q + CT FT
1

RF1C

M12i = NT
1

Mci − AT
ciN2 + CT FT

1
RF2C

M22i = −NT
2

Mci − MT
ciN2 + S + CT FT

2
RF2C

Mci = BiF2C − I Aci = Ai + BiF1C

If the solution of (12) is feasible with respect to
symmetric matrices Pi = PT

i > 0, i = 1, 2...N ,and
matrices N1, N2, the gain matrices F1, F2 guaran-
tee for one ahead predictive control closed-loop
system (9) the guaranteed cost and parameter
dependent quadratic stability within the convex
set defined by (2).
Note that:

• BMI robust stability conditions ”if and only
if” in (11) for concrete matrix P (α) =
∑N

i=1
αiPi reduces in (12) to BMI conditions

” if”.
• If in (12) Pi = Pj = P, i 6= j = 1, 2...N

the feasible solution of (12) with respect
to matrices N1, N2, and symmetric positive
definite matrix P the gain matrices F1, F2

guarantee the guaranteed cost and quadratic
stability within the convex set defined by (2)
for one ahead predictive control closed-loop
system (9).

4. EXAMPLE

Due to experiments for the linear affine type
discrete-time uncertain system one obtaines model
as follows

A = Ā0 +

p
∑

i=1

θiĀi (13)

B = B̄0 +

p
∑

i=1

θiB̄i

where Ā0, Ā1...B̄0, B̄1... are constant matrices of
appropriate dimensions, θ = [θ1...θp] ∈ Rp is a



vector of uncertain and possibly time varying real
parameters with θi ∈< θi, θi >, i = 1, 2, ...p, p is
the number of uncertainties. When one substitutes
to (13) for i = 1, 2...p lower or upper bound of un-
certainties, the polytopic system (2) is obtained,
where N = 2p.
Let we are given the following matrices

Ā0 =

[

.1 .4

.2 .5

]

Ā1 =

[

.003 .01

.003 .001

]

B̄0 =

[

.1 1

.9 .1

]

B̄1 =

[

.001 .01
.1 .0001

]

C =

[

1 0
0 1

]

In this example two vertices are calculated. Using
YALMIP, Lőfberg, 2004 with GLPK solver, Kvas-
nica et al, 2004, for the input data R = I,Q =
10I, S = 10I, ro = 500(λmax(Ljapunovmatrix) <
ro), the following results for quadratic stability
and guaranteed cost are obtained.
Gain matrices F1 and F2

F1 =

[

2.3477 .4834
60.41969 6.2783

]

F2 =

[

3.7655 14.6986
136.7213 240.3946

]

Maximal eigenvalue of two vertex matrices of
closed-loop MPC is given as follows: Maxeig =
0.2311, guaranted cost is determined by λmax(P ) =
489.047 where P is the Lyapunov matrix. The
existence of P = P T > 0 guarantees the closed-
loop quadratic stability and guaranteed cost.
For the above input data and parameter depen-
dent quadratic stability (two Lyapunov matrices)
and guaranteed cost the following results are ob-
tained.
Gain matrices F1 and F2

F1 =

[

7.604 1.0654
1.8944 3.1749

]

F2 =

[

−.4357 167.5213
123.7151 72.5922

]

Maxeig = 0.03581, λmax(P1, P2) = 487.4061.
The feasible solution or existence of two symmet-
ric and positive definite matrices P1, P2 guaran-
tees the closed-loop parameter dependent quadratic
stability and guaranteed cost. The feasible solu-
tion of bilinear matrix inequality conditions have
been obtained by YALMIP with GLPK solver.

5. CONCLUSION

The paper addresses the problem of designing
a parameter dependent quadratic stability static

output/state feedback one step ahead model pre-
dictive control for linear polytopic systems with-
out constraints. The new robust stability condi-
tions for one step ahead model predictive control
are given in Theorem 1. The feasible solution of
BMI has been obtained by Yalmip with GLPK
solver.
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