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Abstract
This work proceeds with research series of natural

evolution in biological population with marked sea-
sonality of life-cycle. The modeling analysis of con-
nection between ontogenesis duration and mode of dy-
namic behavior of biological community (the structure
and dimension of chaotic attractors arising) was con-
ducted. It is shown, that during the process of natural
evolution of natural population with designated season-
ality of life circle the nonrandom transition from stable
regimes of populations dynamics to fluctuations and
chaos (the pseudo stochastic regimes) have to occur.
In case of more complicated nonlinear models of dy-
namics of populations with age structure the increasing
of average individual fitness leads to arising of chaotic
attractors which structure and dimension changes with
model parameters modifications. The increasing of du-
ration and complexity of ontogenesis in average does
not increase the degree of attractors chaotization. The
resonant values of reproductive potential for long on-
togenesis have been found, and these values give the
windows of regularization in chaotic dynamics.
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1 Introduction
The life cycles of many biological species have pro-

nounced temporal periodicity which is as a rule asso-
ciated with the seasonal periodicity of Earth climate.
The main majority of such species has well-defined
(quite short) breeding season in which the each lo-
cal population consists of discrete non-overlapping age
groups (during which their local populations can be
considered as a set of discrete non-overlapping age
groups). In many cases the size of each of these age
groups is defined basically by the sizes of previous age
groups in the previous reproduction period. For an-
nual plants, many insect species, some fish species, am-

phibious and reptiles each separate population is single
age class and neighboring generations of such popula-
tion are non-overlapping. In the ’70s detailed investi-
gations of homogeneous models of population dynam-
ics have appeared; these investigations were carried out
by Far-Eastern researcher A.P. Shapiro [Shapiro, 1972;
Shapiro and Luppov, 1983] and his American colleague
R.M. May [May, 1975]. The investigation of chaotic
regimes of dynamic behavior found in Mays, Rickers,
Hassels etc. models [Ricker, 1954; Hassell, Lawton
and May, 1976] allows us to visualize some general
regularities appearing with sufficiently large values of
reproductive potential and degree of ecological limi-
tation. If this chaotic behavior begins from not great
value of population size, then there will be the slow
growth of population size during large number of gen-
erations; then will be a sharp rise following by consid-
erably greater decrease of population size (to level not
far from initial) in next generation. However these pe-
riodic changes do not return population precisely to ini-
tial level. So despite of evidently periodic character of
number dynamics, there are not any total coincidence
neither in number values nor in number of generations
in phase of increase. Such not clearly periodic behav-
ior of number is typical for many natural populations of
higher organisms [Ruxton, Gurney and de Roos, 1992;
Getz, 2003; Lebreton, 2006; Reluga, 2004], especially
for insects (for example, locusts, grasshoppers, night-
flies).

2 Dynamics of population size in age-structured
species

The simplest population dynamics models consider
changes of whole population number only, assuming
that different generations of the population do not over-
lap. But such conception is not correct, when lifetime
of each generation is essentially longer then time be-
tween breeding seasons is. In this case each local popu-
lation consists of individuals from different age groups
during breeding season. So, it is natural to consider the



number of each separated age group as a model vari-
able. The treatment for clustering the population is de-
fined by the characteristics of biological species.

2.1 Model of population consisting of two age-
classes

Let’s consider the model with age structure, which
may be presented by the set of two age classes, there
are junior and elder. The junior age class consists of
immature individuals and reproductive part consists of
individuals participating in breeding process.
Let’s define Xn - the number of individuals in junior

age class in n-th breeding season, and Yn - the num-
ber of individuals in reproductive part of population.
The breeding season comes to end by the appearing of
newborn individuals of next generation. Let’s assume
that during the time between two reproductive periods
the individuals from junior age class reach the age of
reproductive part, and newborns (or larvae) - to junior.
Also let’s assume that fitness and reproductive potential
of reproductive individuals are not dependent on their
age. These assumptions are correct for organisms with
not great lifetime consisting of two or three breeding
periods; such as many insects, fishes, small mammals,
biennials or triennials and others.
Let’s define a(Y ) - the product of first-year offsprings

birth rate and fitness; f(X) and g(Y ) the fitness of im-
mature and mature individuals respectively. Here we’ll
limit the consideration by the situation, when effect of
limiting factors concentrates on the stage of immature
age class, i.e. a(Y ) ≡ a, g(Y ) ≡ c. The constants
a and c are positive and c < 1. Usually the density-
dependent factors limit the population growth, so let fit-
ness of junior age group f(X) be the decreasing func-
tion (i.e. f ′(X) < 0) and it will tending to zero when
its argument indefinitely grows. So we can receive the
dynamics equations which describe the numbers of dis-
cussed age classes in neighboring generations:

{
Xn+1 = aYn
Yn+1 = Xnf(Xn) + cYn.

(1)

With the assumption f ′(X) < 0 system (1) has sin-
gle nontrivial stationary solution, which is defined from
equations:

f(X̄) = (1− c)/a, Ȳ = X̄/a. (2)

The condition of this solution existence is: af(0) >
1 − c. Its stability is defined by the eigenvalues: λ2 −
cλ− aF ′(X̄) = 0, here F (X) = Xf(X).
It is easy to show that solution (2) may be unstable

only with complex eigenvalues |λ| > 1. In this case,
the loss of stability is accompanied by the appearance
of limiting invariant curves, which upon further change
in the parameters are destroyed with the formation of
highly complex structures, which are called the strange
attractors [Frisman, 1994].

Let’s assume that limitation of junior age class number
is realized by linear rule: f(X) = 1−X/K as in Ver-
hulst model. Here K is the so-called carrying capac-
ity (i.e., the maximum number of sustainable popula-
tion). Then let’s change the absolute age classes’ num-
bers on relative (or dimensionless) ones: x = X/K,
y = Y/K.
So (1) transforms to:

{
xn+1 = ayn
yn+1 = xn(1− xn) + cyn.

(3)

Detailed analysis of mechanisms of arising and evolu-
tion of model (3) complicated limit sets shows that for
large area of acceptable (i.e. biologically substantial)
values of parameters such limit sets are the strange at-
tractors having enough varied and fanciful shape [Fris-
man, 1994].

2.2 Model of population consisting of three and
more age-classes

The suggestion that time that passes between two
neighboring periods of reproduction is enough for
growth of junior individuals to reproductive age and
larvae to junior is not true for some biological species
(such as saury, cod, many sorts of salmons, muskrat,
vole and other). These species have more complicated
age structure than those considered in previous section
and so they cannot be described by model of population
with two age classes.
In the general case the age structure of majority of

populations may be described by separating three age
classes, they are newborn individuals (X), immatures
(Z) and matures (Y ). The duration of each age class,
as well as the duration of life, may differ for different
species. So the maturing of immature individuals to
reproductive stage continues one or more than one sea-
sons (k periods of breeding) and so the model (1) may
be generalized as:


Xn+1 = aYn
Z1,n+1 = Xnf(Xn)
Z2,n+1 = c2Z1,n, ..., Zk,n+1 = c2Zk−1,n
Yn+1 = c1Yn + c2Zk,n.

(4)

The system (4) also has single non trivial stationary
solution, which is defined from equations:

f(X̄) = (1− c1)/(c2)ka, Ȳ = X̄/a
Z̄1 = X̄(1− c1)/(c2)ka
Z̄2 = X̄(1− c1)/(c2)k−1a, ...,
Z̄k = X̄(1− c1)/c2a.

(5)

The comparison of systems (1) and (4) stationary solu-
tions shows that appearance of additional k age classes
leads to increase of youngest age group limitation in



equilibrium; and this effect is inversely as the multi-
plied fitness of young individuals on the next k years
(c2)k.
The condition of existence for this solution as follow-

ing: (c2)kaf(0) > 1− c1. Its stability is defined by the
eigenvalues:

λ2+k − c1λ1+k − (c2)kaF ′(X̄) = 0, (6)

here F (X) = Xf(X).

Figure 1. The limit invariant curves of system (4) in three-
dimensional phase space with variables x, y and z (on the left)
and in two-dimensional phase space with variables x and y (on
the right). The linear function of density limitation for size growth
is chosen: f(x) = 1 − x. The other model parameters are:
c1 = 0.5, c2 = 0.9. The reproductive potential (a) increases
top-down: 2.45, 2.495 and 2.57.

The numeric modeling of model dynamics for multi-
age population allows us to show that just like in
two-age population, the model dynamics complicates
and there are attractors of enough various and fanci-
ful shape as a result of increasing of reproductive po-
tential a and fitness ci. Some examples of the limit

sets of three-age population model with linear limita-
tion of yang age class number (in dimensionless vari-
ables: x = X/K, z = Z/K and y = Y/K ) one can
see on the figure 1.

Figure 2. Number distribution of immature (x) and mature (y) age
groups in limit curves (or attractors) of model with various age-
groups numbers depending on value of coefficient a and step of
its changing δa. Other model parameters are: c = 0.6; c1 =
0.6; c2 = 0.95.

It is easy to show that solution (5) may be unstable
only with complex eigenvalues |λ| > 1 for the even
number of age classes. In case when population con-
sists of odd age classes the real values of λ < 1 may be
in the model. However the loss of stability of solution
(5) also occurs by the complex values of eigenvalues
with |λ| crossing unit in the three-age model with linear
limitation of junior group size [Zhdanova and Frisman,
2011].
Let’s consider some scenarios of stability loss by



Figure 3. Number distribution of immature (x) and mature (y) age
groups in limit curves (or attractors) of model with various age-
groups numbers depending on value of coefficient a and step of its
changing δa. Other model parameters are: c1 = 0.6; c2 = 0.95.

the non trivial equilibrium of multi-aged population
model with linear limitation of immature age group
size: f(x) = 1− x.
On the figures 2 and 3 one can see some examples

of the number distribution of immature (x) and mature
(y) age groups in limit curves of models of populations
with various depth of age structure depending on value
of reproductive potential . In spite of large values of
additional age groups (zi) fitness (c2 = 0.95) the effect
of age-structure complication is clearly presented. It is
evident from figures that at beginning the increase of
maturing duration of immature individuals is followed
by the reducing of reproductive potential a values re-
gion where non trivial equilibrium remains stable; then
(for populations with 4-5 age groups) this region begin
grow and population with 9-10 age groups has already
more extensive region with stationary number dynam-
ics than those with two age classes. In addition the

Figure 4. Number distribution of immature age group (x) in limit
curves (or attractors) of model; on the bottom part the dynamics of
Lyapunov exponents (left axis) and attractors dimensions (right axis)
depending on value of coefficient a.

upper limit of mature and immature age classes num-
ber shifts down. There are not any clear regularities
connected with age groups evenness or oddness.
Let’s complete the phenomenological picture of

model dynamic regimes by the dynamics of Lyapunov
exponents (λi) and by dimensions (D) of emerging at-
tractors.
Bennetin’s algorithm [Neymark, Landa, 1987] for

calculation of Lyapunov exponents was applied; and
Lyapunov attractor dimension was calculated by the
Kaplan-Yorke formula:

D = j +

j∑
i=1

λ1/|λj+1|, (7)

here j = max{m :
∑m

i=1 λi ≥ 0}.
On the figures 4 - 7 one can see pairs of charts: the

bifurcation diagrams on the top part of figures and on
the bottom - the dynamics of Lyapunov exponents and
of attractors’ dimensions for 2-, 3- and 4-age popula-
tions. Results of conducted investigation show that at-
tractors of less dimension than maximal possible one
are prevalent in the large part of acceptable parametric
region of reproductive potential (a) values. In addition,
when in two-aged model there are some attractors of di-
mension 2 with extremely large value of parameter a;
but in three-aged model the attractors reach dimension
3 not for all values of parameter c1 (results not shown);
extension of maturating period on next unity does not



Figure 5. Number distribution of immature age group (x) in limit
curves (or attractors) of model; on the bottom part the dynamics of
Lyapunov (left axis) exponents and attractors dimensions (right axis)
depending on value of coefficient .

lead to emerging of attractor with dimension 4 more-
over, there are not even any attractors of dimension 3
in four-aged population model.
So the results of conducted numerical investigation

show that although increasing of ontogenesis duration
follows by growth of potential possibilities for intensi-
fication of systems dynamics chaotization but expected
growth of chaotization does not occur and in average
the dynamics of system with more complicated struc-
ture looks like less various then those of population
with short ontogenesis. In biological aspect this fact
means that population with long ontogenesis in aver-
age has more ordered dynamics and consequently it is
more viable.

3 Conclusion
The model analysis of connection between ontogen-

esis duration and character of isolated population dy-
namics (the structure and dimension of emerging at-
tractors) has conducted. In uniform population the
growth of reproductive potential follows by the logi-
cal transition from stable dynamic regimes of popula-
tion size to the fluctuations and chaos. For more com-
plex non-linear dynamics models of population with
age structure (with long ontogenesis) the growth of re-
productive potential leads to arising of chaotic attractor,
which structure and dimension changes with varying of
model parameters values too. Nevertheless, growth of
ontogenesis duration and complexity does not increase
the power of attractors’ chaotization. The most dy-
namic stability is presented by such factors as increas-

Figure 6. Number distribution of immature age group (x) in limit
curves (or attractors) of model; on the bottom part the dynamics of
Lyapunov exponents (left axis) and attractors dimensions (right axis)
depending on value of coefficient a.

ing of reproductive potential values region with stable
dynamics in multi-age populations, the restriction of
fluctuation scope of population groups’ sizes, and scant
diversity of attractors with large dimension.
This result provides one possible explanation at the

model level the fact that many natural biological pop-
ulation with age structure demonstrate clear stable or
pseudo-cyclic dynamics [Bobyryev, Kriksunov, 1996;
Clutton-Brock et al., 1997; Fewster et al., 2000; Freck-
leton, Watkinson, 2002; etc.], despite there are wide va-
riety of dynamic regimes that theoretically possible for
structured populations [Greenman and Benton, 2004].
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