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Abstract

We present an invariant definition of the hypoelliptic Laplacian on sub-Riemannian structures with
constant growth vector using the Popp’s volume form introduced by Montgomery. This definition generalizes
the one of the Laplace-Beltrami operator in Riemannian geometry. In the case of left-invariant problems
on unimodular Lie groups we prove that it coincides with the usual sum of squares.

We then extend a method (first used by Hulanicki on the Heisenberg group) to compute explicitly
the kernel of the hypoelliptic heat equation on any unimodular Lie group of type I. The main tool is the
noncommutative Fourier transform. We then study some relevant cases: SU(2), SO(3), SL(2) (with the
metrics inherited by the Killing form), and the group SE(2) of rototranslations of the plane.

The study of the properties of the heat kernel in a sub-Riemannian manifold drew an increasing attention
since the pioneer work of Hörmander [16].

Since then, many estimates and properties of the kernel in terms of the sub-Riemannian distance have been
provided (see [2, 4, 6, 7, 10, 19, 23, 28, 31] and references therein).

In most cases the hypoelliptic Laplacian appearing in the heat equation is the the sum of squares of the
vector field forming an orthonormal frame for the sub-Riemannian structure. In other cases it is built as
the divergence of the horizontal gradient, where the divergence is defined using any C∞ volume form on the
manifold (see for instance [30]).

The Laplacians obtained in these ways are not intrinsic in the sense that they do not depend only on the
sub-Riemannian distance. Indeed, when the Laplacian is built as the sum of squares, it depends on the choice
of the orthonormal frame, while when it is defined as divergence of the horizontal gradient, it depends on the
choice of the volume form.

The first question we address in this paper is the definition of an invariant hypoelliptic Laplacian. As far
as we know, this question has been raised for the first time in a paper by Brockett [3]. Many details can be
found in Montgomery’s book [25].

To define the intrinsic hypoelliptic Laplacian, we proceed as in Riemannian geometry. In Riemannian
geometry the invariant Laplacian (called the Laplace-Beltrami operator) is defined as the divergence of the
gradient where the gradient is obtained via the Riemannian metric and the divergence via the Riemannian
volume form.

In sub-Riemannian geometry, we define the invariant hypoelliptic Laplacian as the divergence of the horizon-
tal gradient. The horizontal gradient of a function is the natural generalization of the gradient in Riemannian
geometry and it is a vector field belonging to the distribution. The divergence is computed with respect to the
sub-Riemannian volume form, that can be defined for every sub-Riemannian structure with constant growth
vector. This definition depends only on the sub-Riemannian structure. The sub-Riemannian volume form,
called the Popp’s measure, was first introduced in Montgomery’s book [25], where its relation with the Haus-
dorff measure is also discussed. The definition of the sub-Riemannian volume form is simple in the 3D contact
case, and a bit more delicate in general.

We then prove that for the wide class of unimodular Lie groups (i.e. the groups where the right- and
left-Haar measures coincide) the hypoelliptic Laplacian is the sum of squares for any choice of a left-invariant
orthonormal base. We recall that all compact and all nilpotent Lie groups are unimodular.
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In the second part of the paper, we present a method to compute explicitly the kernel of the hypoelliptic
heat equation on a wide class of left-invariant sub-Riemannian structures on Lie groups. We then apply this
method to the most important 3D Lie groups: SU(2), SO(3), and SL(2) with the metric defined by the
Killing form, the Heisenberg group H2, and the group of rototranslations of the plane SE(2). These groups
are unimodular, hence the hypoelliptic Laplacian is the sum of squares. The interest in studying SU(2), SO(3)
and SL(2) comes from some recent results of the authors. Indeed, in [5] the complete description of the cut and
conjugate loci for these groups was obtained. These results, together with those presented in this paper, open
new perspectives for the clarification of the relation between the presence of the cut locus and the properties
of the heat kernel, in line with the result of Neel and Strook [26] in Riemannian geometry. Up to now the
only case in which both the cut locus and the heat kernel has been known explicitly was the Heisenberg group
[11, 12, 17].1

The interest in the hypoelliptic heat kernel on SE(2) comes from a model of human vision. It was recog-
nized in [8, 27] that the visual cortex V1 solves a nonisotropic diffusion problem on the group SE(2) while
reconstructing a partially hidden or corrupted image. The study of the cut locus on SE(2) is a work in progress.
Preliminary results can be found in [24].

The method is based upon the generalized (noncommutative) Fourier transform (GFT, for short), that
permits to disintegrate2 a function from a Lie group G to R on its components on (the class of) non-equivalent
unitary irreducible representations of G. This technique permits to transform the hypoelliptic heat equation
into an equation in the dual of the group3, that is particularly simple since the GFT disintegrate the right-
regular representations and the hypoelliptic Laplacian is built with left-invariant vector fields (to which a one
parameter group of right-translations is associated).

Unless we are in the abelian case, the dual of a Lie group in general is not a group. In the compact case it
is a so called Tannaka category [14, 15] and it is a discrete set. In the nilpotent case it has the structure of Rn

for some n. In the general case it can have a quite complicated structure. However, under certain hypotheses,
it is a measure space if endowed with the so called Plancherel measure. Roughly speaking, the GFT is an
isometry between L2(G, C) (the set of complex-valued square integrable functions over G, with respect to the
Haar measure) and the set of Hilbert-Schmidt operators with respect to the Plancherel measure.

The difficulties of applying our method in specific cases rely mostly on two points:

i) computing the tools for the GFT, i.e. the non-equivalent irreducible representations of the group and the
Plancherel measure. This is a difficult problem in general: however, for certain classes of Lie groups there
are suitable techniques (for instance the Kirillov orbit method for nilpotent Lie groups [21], or methods
for semidirect products). For the groups disccussed in this paper, the sets of non-equivalent irreducible
representations (and hence the GFT) are well known (see for instance [29]);

ii) finding the spectrum of an operator (the GFT of the hypoelliptic Laplacian). Depending on the structure
of the group and on its dimension, this problem gives rise to a matrix equation, an ODE or a PDE.

Then one can express the kernel of the hypoelliptic heat equation in terms of eigenfunctions of the GFT of the
hypoelliptic Laplacian, or in terms of the kernel of the transformed equation.

For the cases treated in this paper, we have the following (the symbol ∐ means disjoint union):

1The Heisenberg group is in a sense a very degenerate example. For instance, in this case the cut locus coincides globally with
the conjugate locus (set of points where geodesics lose local optimality) and many properties that one expects to be distinct for
more generic situations cannot be distinguished. The application of our method to the Heisenberg group H2 provides in a few
lines the Gaveau-Hulanicki formula [11, 17].

2One could also say decompose (possibly continuously).
3 In this paper, by the dual of the group, we mean the support of the Plancherel measure on the set of non-equivalent unitary

irreducible representations of G; we thus ignore the singular representations.
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Group Dual of GFT Eigenfunctions of the GFT
the group of the hypoelliptic Laplacian of the hypoelliptic Laplacian

H2 R
d2

dx2
− λ2x2 (quantum Harmonic oscillator) Hermite polynomials

SU(2) N Linear finite dimensional operator related to the Complex homogeneous
quantum angular momentum polynomials in two variables

SO(3) N Linear finite dimensional operator related to Spherical harmonics
orbital quantum angular momentum

SL(2) R+ ∐ R+ Continuous: Linear operator on analytic functions Complex monomials
∐N ∐ N with domain {|x| = 1} ⊂ C

Discrete: Linear operator on analytic functions
with domain {|x| < 1} ⊂ C

SE(2) R+
d2

dθ2
− λ2 cos2(θ) (Mathieu’s equation) 2π-periodic Mathieu functions

The idea of using the GFT to compute the hypoelliptic heat kernel is not new: it was already used on
the Heisenberg group in [17] at the same time as the Gaveau formula was published in [11], and on all step 2
nilpotent Lie groups in [9, 1]. See also the related work [22].
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