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Abstract— In this paper I review results from my research
group, published recently in Scientific Reports (Nature) 4, 4308,
on taming explosive growth in spatially extended systems.
Specifically we consider collections of relaxation oscillators,
which are relevant to modelling physical, biological and en-
gineering phenomena, under different coupling topologies. We
observe that the system witnesses unbounded growth under
regular connections on a ring, for sufficiently high coupling
strengths. However, when some fraction of the regular connec-
tions are rewired to random links, this blow-up is quenched.
These results indicate a new direction in controlling blow-ups in
complex systems. Lastly, for the case of stochastic switching of
links we find scaling relations between the fraction of random
links and the link rewiring probability.

I. INTRODUCTION

A prototypical example of self-sustained oscillations in
nonlinear systems is the Van der Pol oscillator [1], governed
by the second-order differential equation:

ẍ+ µ(x2 − 1)ẋ+ x = 0 (1)

where x is the dynamical variable and µ is a parameter
determining the nature of the dynamics. Relaxation oscil-
lations arise in this system for µ > 0, with the limit cycles
displaying sudden discontinuous jumps. Such a system is
very relevant in modelling phenomena such as heart activity,
neurononal spiking [3] and seismology [4]. In this extended
abstract we will focus on the dynamics of networks of such
oscillators and present a summary of our key observations,
illustrated by representative results from the work in my
group. The content here is adapted from Refs. [6], [7].

II. TIME VARYING NETWORK OF RELAXATION
OSCILLATORS

Consider a generic network constituted of nonlinear dy-
namical elements at the nodes and a coupling term modeling
the interaction between the elements. The local dynamics at
each node of the network is given by Ẋ = F(X), where X is
a m-dimensional state vector of the dynamical variables and
F(X) is a typically nonlinear velocity field. So the dynamics
of such a system is given by following evolution equation:

Ẋi = F(Xi) + ε

N∑
j=1

JijH(Xi,Xj), i = 1, ..., N,

(2)
where Jij are the elements of a connectivity matrix. The
coupling strength is given by ε and H(Xi,Xj) is the
coupling function determined by the nature of interactions
between dynamical elements i and j.
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We first review our results obtained for the case of coupled
Van der Pol oscillators [1], characterized by nonlinear damp-
ing, and governed by the second-order differential equation
given by Eqn. 1. We take µ > 0 which yields relaxation
oscillations characterized by slow asymptotic behavior and
sudden discontinuous jumps. Associating ẋ = y gives:

ẋ = f(x, y) = y

ẏ = g(x, y) = −µ(x2 − 1)y − x (3)

Now we consider a ring of N nonlinearly coupled Van-
der-Pol oscillators [8]-[10], namely a specific form of Eqn.
2 with m = 2, Xi = {xi, yi}, F = {f, g} and H(Xi,Xj) =
{f(xj , yj)−f(xi, yi), g(xj , yj)−g(xi, yi)} given as follows:

ẋi = f(xi, yi) +
ε

2
[f(xi−1, yi−1) + f(xi+1, yi+1)− 2f(xi, yi)]

ẏi = g(xi, yi) +
ε

2
[g(xi−1, yi−1) + g(xi+1, yi+1)− 2g(xi, yi)](4)

Here index i specifies the site/node in the ring, with the
nodal on-site dynamics being a Van der Pol relaxation
oscillator. Note that this form of coupling has been explored
insufficiently in existing literature.

Starting with this regular ring, we consider increasingly
random networks formed as follows: we begin with a reg-
ular lattice, such as the ring of regular nearest neighbour
interactions mentioned above, and then with probability p
we replace (“rewire”) the regular links with random connec-
tions. So when p is non-zero, random non-local connections
exist along-side regular local links, and such networks have
widespread relevance [11]. Note that our network preserves
degree, namely the number of links for each oscillator
remains the same under rewiring.

Additionally we consider the scenario of time-varying
links or dynamic links. Here the set of connections that get
rewired to random nodes changes from time to time. So the
underlying web of links switches over time [12], [13], [14].
Such time varying connections are widely prevalent, espe-
cially where the system responds to environmental influences
or internal adaptations [15], [16].

We explored two different methods for changing the
connectivity of the network. The first algorithm involves the
periodic switching of links in the network. Here all the links
in the network switch periodically, preserving the qualitative
nature of the connectivity matrix. We denote the time-scale of
network change by r. So larger r implies infrequent network



changes, with the limit r →∞ corresponding to the standard
static case.

Periodic switching of connections may occur in situations
where the links are determined by some global external
periodic influence. However a more realistic scenario is a
probabilistic model of link switching, such as in [14], [17].
So we introduce a second algorithm where the links switch
randomly and asynchronously in time. Here each node i has
probability pr of changing its links in a certain time interval
τ . If the links of a particular node are selected for rewiring,
they change such that with probability p they connect to
random nodes and with probability (1 − p) they connect to
nearest neighbors.

In this algorithm, the nodes change their links indepen-
dently and stochastically. The probability of the new links
being random or regular is determined by p as in the first
algorithm (and as in the standard small-world scenario).
So, while in the first algorithm link changes occur globally
throughout the network, in the second algorithm uncorrelated
changes occur at the local level.

We obtained the shapes and sizes of the limit cycles
arising in this network, for system sizes ranging from
N = 10 to N = 103, under varying fraction of random links
p (0 ≤ p ≤ 1). We investigated a large range of network
switching time periods r (0.01 ≤ r ≤ 1) for the case of
periodically switched networks, and 0 ≤ pr ≤ 1 for the case
of stochastically switched networks (with τ = 0.001). We
review below the central results obtained from our extensive
numerical simulations as reported in [6], [7].

Spatiotemporal Patterns in a Regular Ring :

First we describe our principal observations for coupling
on a ring with two nearest neighbours (i.e. p = 0) under
increasing coupling strengths.

For very weak coupling the system shows no regular
spatiotemporal pattern. As coupling is increased, regular
travelling wave-like behaviour develops. As coupling gets
stronger, and approaches a critical value εc, the regularity
of the pattern breaks up. Figs. 1-3 display representative ex-
amples of these spatiotemporal patterns. When the coupling
exceeds the critical value (ε > εc), the system experiences a
blow-up, namely the amplitude of the oscillations grows in
an unbounded manner. For instance, the amplitude typically
grows from O(1) to O(104) in a time interval as short as
∼ 10−3.

Effect of increasing coupling range:

To further explore the mechanism behind this kind of
unbounded growth, we studied long range interactions
where each node interacted with k nearest neighbhors
(where 1 < k ≤ N ). We found that long range interactions
stabilized the network and the explosive growth was
suppressed more efficiently with increasing k. Further
it appeared that for low coupling strengths the minimal

number of neighbours necessary for preventing blow-ups kc
was independent of system size N , while for high coupling
strengths the fraction kc/N is independent of the network
size N .

Spatiotemporal Behaviour of the Oscillators under
Random Links:

Interestingly, very different behaviour from that described
above, emerges when the links are rewired randomly. Repre-
sentative results for periodically switched networks is shown
in Fig. 4, for coupling strengths greater than the critical value
εc. For these coupling strengths, under regular coupling,
there was a blow-up in the system. However, it is clearly
evident that the blow-up has been effectively suppressed for
p > 0, and all the limit cycles remain bounded. Note that we
obtain qualitatively similar results under stochastic switching
of links.

We also explored the minimum fraction of random links
necessary to prevent the unbounded growth in the system as a
function of the parameter µ. Our observation was as follows:
for higher µ, even when the links switch rapidly, the range
over which the dynamics remains bounded is quite small. So
the nonlinearity of the local dynamics determines how fast
the random links need to be switched in order to tame the
unbounded growth. Also clearly, when the network changes
are fast, a smaller fraction of random links is necessary to
enforce boundedness.

Synchronization of the Bounded State

A natural question aries here: when random coupling
suppresses blow-ups, does it give rise to a synchronized
state? Interestingly, different patterns emerge under differ-
ent time scales of network change. Networks with rapidly
changing connections yield a synchronized state. However,
slow network changes gives bounded dynamics that is not
synchronized [6]. This was demonstrated quantitatively in
[6] through a synchronization order parameter, defined as
the mean square deviation of the instantaneous states of
the nodes, averaged over time and over different initial
conditions.

So this relaxation oscillator network yields three kinds
of dynamical states: (i) bounded synchronized motion; (ii)
bounded unsynchronized dynamics; and (iii) blow-ups. The
dynamical state that will emerge is determined by the inter-
play of the coupling strength, fraction of random links and
frequency of switching links.

Further for the case of stochastic switching of links we
found some interesting scaling relations between the fraction
of random links p and the link rewiring probability pr
[6]. First we found that the critical coupling strength εc
beyond which blow-ups occur, scales with the link rewiring
probability pr and fraction of random links p as:

εc ∼ (p pr)
β (5)



where β = 0.119± 0.001. This scaling relation implies that
as the links change more frequently, and there is larger frac-
tion of random connections, the range over which bounded
dynamics is obtained becomes larger. Further notice that the
quantity that occurs in the scaling relation is the product
p pr. So the emergent phenomena is the same if this product
remains the same, even though individually p and pr may
differ.

Furthermore the minimum fraction of random links pc
necessary to suppress blow-ups, at a particular coupling
strength, varies with link switching probabilities pr as

pc ∼ (pr)
δ (6)

Representative values of the exponent are: δ = −1.04±0.008
for ε = 0.7 and δ = −0.98± 0.008 for ε = 0.9 [7].

Lastly, we checked the generality and scope of our results
by studying the behaviour of a network of Stuart-Landau
oscillators given by:

ż = (1 + iω − |z|2)z (7)

where ω is the frequency, and z(t) = x(t) + iy(t). Fig. ??
shows representative results. It is clear that networks that
change rapidly suprress blow-ups over a larger range of p.
This implies that even when the number of random links is
small, blow-ups are prevented in rapidly varying networks,
while slow varying networks need a larger number of random
links in order to suppress unbounded growth. Further, time-
varying links yield more synchronized states.

We also studied nonlinearly coupled networks of
FitzHugh-Nagumo oscillators modeling neuronal popula-
tions, where the dynamics of the membrane potential x and
the recovery variable x is described by [19], [20]:

ẋ = x− x3/3− y + I

ẏ = Φ(x+ a− by) (8)

with I being the magnitude of stimulus current. We also
explored the heterogeneous systems, such as the case where
the nonlinearity parameter µ was distributed over a range
of positive values for the local Van der Pol oscillators.
Our extensive numerical simulations showed qualitatively
similar behavior for all of the above systems [6]. This
strongly indicates that the prevention of blow-ups through
time-varying random connections is quite general.

Conclusions

In summary, we have reviewed our recent results on the
dynamics of a collection of relaxation oscillators under
varying coupling topologies, ranging from a regular ring
to a random network. Our central result is the following:
the coupled system experiences unbounded growth under
regular ring topology, for sufficiently strong coupling
strength. However when some fraction of the links are
dynamically rewired to random connections, this blow-up
is suppressed and the system remains bounded. So our
results suggest an underlying mechanism by which complex

systems can avoid a catastrophic blow-up. Further from
the stand point of potential applications, our observations
indicate a method to control and prevent blow-ups in
coupled oscillators that are commonplace in a variety of
engineered systems.
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Fig. 1. (Top to Bottom) Phase-space plot of all the van der Pol oscillators
coupled to nearest neighbours on a ring with µ = 1.5 (i = 1, 2, . . . 100),
with the x-axis representing position, and the y-axis representing velocity,
and the different colors representing the different oscillators; Plot of the
time evolution of position xi(t) of all the oscillators, with different colors
representing the different oscillators; Density plots of the spatiotemporal
evolution, with the site indices on the x-axis and time along the y axis,
and the magnitude of the variables xi(t) represented by the colour scale.
Here coupling strength is 0.007. For coupling strengths greater than the
critical value εc ∼ 0.5, the dynamics of all the oscillators is unbounded.
This figure is adapted from [7].

Fig. 2. (Top to Bottom) Phase-space plot of all the van der Pol oscillators
coupled to nearest neighbours on a ring with µ = 1.5 (i = 1, 2, . . . 100),
with the x-axis representing position, and the y-axis representing velocity,
and the different colors representing the different oscillators; Plot of the
time evolution of position xi(t) of all the oscillators, with different colors
representing the different oscillators; Density plots of the spatiotemporal
evolution, with the site indices on the x-axis and time along the y axis,
and the magnitude of the variables xi(t) represented by the colour scale.
Here coupling strength is 0.3. For coupling strengths greater than the critical
value εc ∼ 0.5, the dynamics of all the oscillators is unbounded. This figure
is adapted from [7].



Fig. 3. (Top to Bottom) Phase-space plot of all the van der Pol oscillators
coupled to nearest neighbours on a ring with µ = 1.5 (i = 1, 2, . . . 100),
with the x-axis representing position, and the y-axis representing velocity,
and the different colors representing the different oscillators; Plot of the
time evolution of position xi(t) of all the oscillators, with different colors
representing the different oscillators; Density plots of the spatiotemporal
evolution, with the site indices on the x-axis and time along the y axis,
and the magnitude of the variables xi(t) represented by the colour scale.
Here coupling strength is 0.5. For coupling strengths greater than the critical
value εc ∼ 0.5, the dynamics of all the oscillators is unbounded. This figure
is adapted from [7].
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Fig. 4. Spatiotemporal evolution of the oscillators under random links,
with the site indices on the x-axis and time along the y axis, and the
magnitude of the variables xi(t) (i = 1, . . . N ), represented by the colour
scale, for network switching time period (left) r = 0.1 (right) r = 0.01 .
Here N = 100, µ = 1.5, fraction of random links p = 0.6 and coupling
strength ε = 0.6 > εc. Note that regular coupling (p = 0) yields unbounded
dynamics at this coupling strength [7].


