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Abstract
In the paper some methods and instruments for beam

lines global optimization are discussed. It is known
that modern beam machines (from short beam lines to
circular accelerators) are based on very complex con-
trol systems, which ensure desired beam characteris-
tics. The necessary demands formulated in the form
of a functional set. These problems are referred to the
so-called NP-complete problems and require searching
for a possible solutions manifold in multi-objective pa-
rameters spaces. In the paper we discuss a optimiza-
tion problem for a special class of optimal beam lines
— the class of ion-optical systems (such as micro- and
nanoprobe systems, matching channels as so on). For
successful decision of this problem we suggest to use
methods and instruments for global optimization prob-
lem solution. This approach is based on genetic algo-
rithms and neural networks tools.
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1 Introduction
It is well known that optimization tools are needed

in every step of any accelerator project: from the de-
sign to corresponding beam line start-up. In different
steps the project require different optimization meth-
ods and technologies, for example, the initial (design)
step of any project is based on a scanning of appropri-
ate parameters set. The next step demands some lo-
cal optimizers giving us more adequate during oper-
ations to choose the next best control parameters set.
It is obviously that the optimization procedure effec-
tiveness depends on used mathematical methods and
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computer modeling instruments. The modern electro-
physical facilities (from enough small machines such
as ion-optical systems (IOS) up to large linear and cir-
cular accelerators) are considered as multi-parametric
control systems with complex organized set of require-
ments (see, for example, [Andrianov, 2004]). The mod-
ern beam line represent complex dynamical systems,
described by nonlinear motion equations for beam par-
ticles. The choice of appropriate mathematical tools
for both dynamics simulations and optimization proce-
dures plays a significant role.
At present all problems of optimal solution searching

processes can be separated in two follows stages:

systems design with the given properties;
control system optimization using corresponding
set of functionals.

In the paper main attention is focused on the first
stage. Modern control systems of beam lines even
in the case of small control elements number (for in-
stance, limited ten) present itself complex adjustments.
This feature brings the necessary to create the special
methods and algorithm providing efficient decision of
the problem. The analysis of the constructive features
of the modern beam lines allows to formulate the fol-
lowing main positions:

a nonlinear nature of particles motion equations;
a collective character of control object (the beam
is considered as particles ensemble);
a multi-objective character of optimization prob-
lems;
the presence of some representative set of optimal
solutions;
it is necessary to consider the feasibility of optimal
solutions (the tolerances problem).

The own experience of paper authors (see e. g. [An-
drianov, 2009]) and a review of existing publications
[Yang, 2008], urge us to use for solution of beam
line design as methods of global optimization based



on corresponding mathematical methods and informa-
tion and computational technologies. In the next this
approach we name as a global optimization concept.
As an additional demand we also mention the require-
ment fitting parameters tolerances. The main advantage
of the presented approach is the possibility of finding
a global extremum in the multi-objective parameters
spaces [Michalewicz, 1996]. The presented concept
also includes the analysis of local extremums, which
may be more resistant to parameters values change, and
therefore easier and cheaper realizable in practice.
Considering the global optimization problems in acce-

lerator theory, we should mention the papers [Gao,
2010; Yang, 2008], dedicated to the application of the
genetic algorithms ideology for the solving problems of
beam physics. In the article [Gao, 2010], for example,
consider the problem of finding the optimal parame-
ters of a linear system subject to obtain low beam emit-
tance. However, there is no considered the impact that
additional functionals may have included on the con-
structed set of Pareto optimal solutions (eg., restrictions
on the beam features on the target). This will require
the researcher to conduct a further analysis of their mu-
tual influence, which is not always trivial.
It is worth mentioning the need for a mechanism of

global optimization in conjunction with modern com-
puter simulation. Thus, it is important to properly as-
sess the possibility of a development environment and
existing methodologies to create appropriate models
and corresponding program complexes.

2 Mathematical model of beam dynamics
The beam physics is based on four basic points:

first of all we have to consider an evolution of en-
semble of particles (one has to take account of a
collective character of beams);
secondly — the motion of particles are described
by nonlinear equations (the Newton–Lorentz equa-
tions) [Chao, 1999];
in the third place the control system in beam
physics is designed as an optimal structure of con-
trol system (generated by electromagnetical steer-
ing elements) with very many control parameters;
fourthly — the corresponding optimal control
problems have two features:

1) multi-parameter and nonlinear character
of control system;
2) conflicting character of a set of objective
functions.

Such problems solutions always begin with the con-
struction of a linear model, consisting of quadrupole
lenses, dipole magnets and free spaces between them.
However, this approach could be considered taking
into account the nonlinear effects and the effect of
self-charge, because the mathematical model of IOS is
based on the matrix formalism, which has a certain de-
gree of universality.

In addition to accounting for various restrictions on
the control parameters of the system is important to de-
tect parameter values sets that are optimal in terms of
system implementing. Feature of control systems of
beam lines is a set of particles, which can be regarded
with equations of motion for each particle individually
or use the approaches describe the entire ensemble of
particles in general.

2.1 Beam Particle Motion Equations
It is known that each particle beam motion is de-

scribed using the well-known Newton–Lorentz equa-
tion [Chao, 1999]:

dX

ds
= F(X, s), (1)

where F(X, s) = F(X,E,B, s) is a Newton–Lorentz
force, and E — a electrical field intensity vector, B — a
magnetic induction vector. These vectors are described
in an appropriate curvilinear system of coordinates, as-
sociated with some reference orbit [Chao, 1999]. The
equations of motion (1) in general form can be written
as:

dX

ds
=

∞∑
k=0

P1k(E,B, s)X[k], (2)

where X[k] = X ⊗ . . . ⊗ X. The symbol “⊗” means
Kronecker product and X = {x, x′, y, y′}∗ in two di-
mensional case of transversal phase coordinates or in
the general case we have X = (x1, x2, . . . , x2n)

∗, x, y
— transverse coordinates to the reference orbit, the
symbol “*” means transparent and x′ = dx/ds. Sim-
ilarly, we can describe the equation for the six-phase
vector which also includes the longitudinal phase coor-
dinates. Usually, on the first step a researcher considers
so called “linear approximation” of motion equations:

dX

ds
= P11(s)X, X(s) = R11(s|s0)X0,

this case presented, for example, in [Andrianov, 2004].
The solutions of equations (2) can be found in the fol-

lowing form:

X(s) =
∞∑

k=0

R1k(E,B; s|s0)X[k]
0 ,

where X0 = X(s0) — “the initial value” of the phase
vector. The program implements a similar problem
has the opportunity to represent the system structure
in graphical form.



2.2 Representation of the Particle Beam
There are several ways to write the equations of mo-

tion of a particle beam as an ensemble. It is worth men-
tioning three of them:
1) Single-Particle Description. Set of particles is rep-
resented as a matrix MN (s) =

(
X1(s), . . . ,XN (s)

)
,

where Xi(s) — current phase coordinates vector (at the
moment s), N — number of particles, dimX = 2n,
where 2n — dimension of phase space and MN is a
matrix describing a particle ensemble M(s) including
N particles.
2) Envelope Formalism Description. Another way to
view a description of the beam is in the terms of enve-
lope S(s) — matrix dimension n×n. The most popular
form of this matrix is described in terms of rms (root–
mean–square) values [Chao, 1999]:

S(s) =
∫

M(s)

f(X⃗, s)X(s)X∗(s)dX,

where M(s) — a current phase manifold occupied by
beam particles, f(X⃗, s) — a distribution function.
The transverse manifold occupied by beam particles

can described by S(s)–matrix (i. e. rms-envelope ma-
trix). Besides the rms-envelope matrix we can intro-
duce another envelope matrices (see, for example, [An-
drianov, 2004]). For all forms of envelope matrices one
can write the following form of the matrix dynamical
equation:

S(s) = R(s|s0)S0R∗(s|s0). (3)

3) Phase Space Distribution Function. Another way of
representing the beam line is to describe an ensemble of
particles in the shape of the distribution function f0(X)
in phase space, satisfying the Vlasov system equations:

∂f(X, s)

∂s
+ FL(X,E,B, s)

∂f(X, s)

∂X∗ = 0,

where FL — the Lorentz force acting on the particle
ensemble, E,B — electric and magnetic components
of electromagnetic field satisfying Maxwell’s equations
[Chao, 1999].
All these approaches to particle beam description are

well agreement with so called matrix formalism (see,
for example, [Andrianov, 2004]). The matrix formal-
ism allows a researcher to use an unified tools for all
problems of beam particle evolution. It should be note
that there is a difference between this formalism and
the widely used formalism based on tensor description
of particle coordinates evolution

xi(s) =
∞∑

|k|=1

∑
k1,...,k2n

k1+...+k2n=|k|

Tik1...knx
k1
1 x

k2
2 · · ·xk2n

2n ,

where x1, . . . , x2n are phase coordinates of a parti-
cle and Tik1...k2n — are tensor components represent-
ing partial derivations in the Taylor expansion [Chao,
1999] and k = (k1, . . . , k2n). From authors point of
view the matrix formalism based on two-dimensional
matrices Rik(s|s0), which combine corresponding par-
tial derivations, is more comfortable.

3 Formalization of a Global Optimization Prob-
lem

In the previous section we consider some basic math-
ematical approach for beam, dynamics presentation.
Before formalization of problems for optimization of
beam line structure, one has to define the vector of con-
trol parameters W⃗ and functions U⃗(s). The control pa-
rameters describe some characteristics of a beam line,
which can not be changed during a experiment session.
For example, lengths of drifts, lenses and other geomet-
rical parameters can play the role of the control param-
eters. On the other hand characteristics of electromag-
netical fields, generated by control elements, can play
the role of control functions.

3.1 Control Function Formalization
The motion equations (2) and the evolution equation

of the matrix MN , envelope matrix S(s) and distribu-
tion function f0(X, s) allow to follow the beam evo-
lution with given external fields (in this paper we ne-
glect the space charge). Usually in the theory and prac-
tice of beam physics electro-magnetic field induced by
the control elements, such as dipoles, quadrupoles, sex-
tupoles and solenoids. In this case, these fields can be
represented in the form of Taylor’s series in the trans-
verse coordinates, whose factors in general depend on
the longitudinal coordinate along the reference orbit s
(see, for example, [Chao, 1999]).
For example, a scalar magnetic potential ψ can be rep-

resented in the following form:

ψ(x, y, s) =
∞∑

k, i=0

aik(s)
xi

i!

yk

k!
,

where aik(s) satisfy algebraic-differential equations
(see, i. e. [Andrianov, 2004]). For all control elements
can be found aik to any order (using some reference
coefficients aik(s)). For example, in the linear approx-
imation for the quadruple magnet:

Bx = gy, By = gx, Bs = 0,

where g(s) = ∂By(0, 0, s)/∂x = ∂Bx(0, 0, s)/∂y. In
these representations the functional factors facing the
coordinates serve as the control functions. In the case
of quadrupole lens is controlled by g(s).
In the particles beam lines control elements fol-

low each after another. All control functions for



elements can be grouped into one vector U⃗(s) =
(u1(s), u2(s), . . . , um(s))∗, where ui(s), s = 1,m
— describe appropriate control actions generated by
control elements. For example, we can consider the
linear approximation for beam dynamics in a system
with dipole magnets, quadrupole lenses (and may be
solenoids):

x′′ + a1x+ a2y = a3 + a4s,

y′′ + b1x+ b2y = b3 + b4s,
(4)

where the functions ai(s), bj(s) describe fields in the
corresponding control elements [Podzyvalov, 2008].
Using the piece-wise approximation of the control field
these functions can be presented by a set of control pa-
rameters. Some of these parameters have a geometrical
nature and other describe control field characteristics
(see, for example, [Andrianov, 2004]).
From the practical point of view the usage of control

functions for control elements description it is not con-
venient. In this paper, following [Andrianov, 2004; An-
drianov, 2009], we use a parametrization for function
description in some appropriate function classes (see
e. g. [Andrianov, 2008]). For example, for above men-
tioned case of piece-wise approximation for magnetic
field gradient g(s) we receive a parameter gm, describ-
ing the value of field gradient and parameter Lm for the
corresponding effective length. So in our problems we
change vectors of control parameters and functions by
one vector of parameters, in which one part have ge-
ometrical interpretation and other connected with con-
trol field characteristics.

3.2 Functional Requirements
In general, the functional requirements of the parti-

cles beam can be represented in the form of the integral
functional:

J[A] =

sT∫
s0

∫
M(s)

g1(A,X, τ)dXdτ+

+

∫
MT

g2(A,X, T )dX,

where M(s) — a current phase set, occupied by beam
particles. The function g1 describes the functional cri-
teria distribution within the system (if necessary) and
function g2 — the terminal beam requirements. The
choice of the functions g1, g2 is determined by the spe-
cific task and requirements to the system. Often, the
first integral is represented as a finite sum, and the func-
tional J[A] can be written in the form:

J[A] =

p∑
i=1

αiJi[A],

where Ji[A] — partial functional responsibility for cer-
tain characteristics of the beam, αi — weight coeffi-
cients determining the contribution of a functional, i. e.
its importance. Even in the case of short systems (with
a small parameters number) value p can be quite large
(see e. g. equation (4)), which leads to multi-parametric
optimization problems.
It should be note that Ji[A] often, to a certain extent,

contradict each other, so we can speak about the con-
tribution antagonism of the Ji[A] in J[A].
The meaning of these functionals and their contribu-

tion to the decision of choosing one or another solu-
tion will be described below in the global optimization
terms. The approach is only support tool for the opti-
mal solutions choice by researchers, witch have suffi-
cient experience in the described class of problems and
able to build a functional based on their experience.

4 Global Optimization Methods And Instruments
Methods of global optimization can be divided into

two categories: deterministic and heuristic. The first of
these relates to the methods with a proof of optimality
and allow to obtain a solution that differs from the op-
timum by no more than the specified amount. These
methods allow to obtain solutions only for very small
dimensions.
In practice, often using heuristic algorithms [Weise,

2009] allowing to find a approximate minimum with-
out proof of it’s optimality. This permits us to solve the
problem of high dimensionality in a reasonable time
with a fairly acceptable result. As already mentioned,
even simple control systems of beam particles can con-
tain a large number of parameters, therefore in the pa-
per considered the heuristic search algorithms applica-
tion.

4.1 A Classical Global Optimization Problem
We can formulate a classical global optimization

problem as a problem of detection the best possible el-
ements x∗ from a set X in according to a set of criteria
F = {f1, f2, . . . , fn}. These criteria are expressed as
mathematical functions, the so-called objective func-
tions. The exact mutual influences between these ob-
jective functions can apparently become complicated
and are not always obvious.
The simplest method accounting the generated crite-

ria set is to define some weighted sum g(x) =
n∑

i=1

ωifi

of all functions f ∈ F . In some practical problems
it is convenient to consider the following form of the

function g(x): g(x) =
n∑

i=1

ωif
2pi

i , where pi are opti-

mization parameters too. Each objective function fi is
multiplied with a weightwi representing its importance
[Deb, 2001]. However, weighted sums are only suit-
able to optimize functions that at least share the same
degree.
Usually global optimization is founded on evolution-



ary (genetic) algorithms realizing probabilistic search-
ing for the parameter spaces by means of such genetic
operator: crossover, mutation and inversion. The form
of these evolution operators and their presence charac-
terizes the properties of the optimal solutions research
(see e. g. [Michalewicz, 1996; Weise, 2009]).

4.2 Genetic Algorithms
Genetic algorithms described in the works

[Michalewicz, 1996; Weise, 2009] and many oth-
ers are based on rules similar to most of them. These
rules are described in the following sequence of steps:

the initial population step – to create an initial pop-
ulation of random individuals;
the evaluation step – to compute the objective val-
ues of the solution candidates;
the fitness assignment step – to use the objective
values to determine fitness values;
the selection step – to select the fittest individuals
for reproduction;
the reproduction step – to create new individuals
from the mating pool by crossover mutation and
inversion;
the condition breakpoint step – to continue the pre-
vious steps until a condition breakpoint.

Each of these steps is a kind of subproblem which has
an impact on the general problem solutions. Choos-
ing the heuristic search methods is necessary to speak
about “conditional global” and local extremums. This
convention arises from a number of objective reasons.
Indeed, in the process of modeling of such systems of
accelerator physics, first consider the linear model, fur-
ther complication and taking into account nonlinear ef-
fects occur only when the linear model satisfies certain
requirements. This implies that the architecture of any
system is only optimized with the specific task. And
every time a researcher will attempt to build such a sys-
tem and optimize it, he will receive only conditional
optimal solutions.
Sometimes, in the process of control system modeling

developers are trapped in some design features. For
example, the system must satisfy the features of the
matching channel and therefore must primarily be con-
sidered with the number of controls and their layout
(matching problem) [Ovsyannikov, 2008].
It follows that the process of modeling should be pri-

marily organized in such a way that the developer can
independently choose the major and minor functional
and limitations. In the next section we consider the ef-
fectiveness of these methods and instruments of global
optimization for a simple control system of beam par-
ticles.

5 An Ion-Optical System Example
In the paper we demonstrate the suggested approach

for a simple system consisting of two quadrupole dou-
blets with non-zero distance between the lenses (see

Fig. 1.). Here, Li — the lenses length with their gra-
dients k1, k2, and free field space a, g, λi are served
as system control parameters. Focusing lenses are
shown as elements of length L1, defocusing as L2. In
this case, for simplicity of problem statement consid-
ered the similar system so called “russian quadruplet”
[Dymnikov, 1997], often used like test system type.

Figure 1. The control system of beam particles and envelopes
in x-plane — the solid line, in y — the dashed line.

The structure considered in Fig. 1 is designated as
FODO–structure and widely used in various systems
design in accelerator physics. This system can be opti-
mized for its control parameters. For simplicity, in this
paper the structure optimization is not considered. The
usage of the matrix formalism allows us exclude some
parameters from the optimization problem by introduc-
ing some analytical dependence. It is necessary to note
that the similar reduction can be applied for nonlinear
motion equation [Andrianov, 2004]. The others should
impose some physical restrictions.

5.1 Symbolic Forms of Objective Functions
Consider some of the character entry imposed on the

optimization parameters in the modeling process. The
transverse manifold described by S(s)-matrix, and oc-
cupied by beam particles as shown in the equation (3).
Assume that M is a matriciant of focusing part of the
system, then the total matriciant can be represented in
following form:

Rtot = Rg ·Mobj · Ra, (5)

where Mobj is the matrix for a objective (consisting
from four quadrupoles, see Fig. 1). Taking into ac-
count the matrices Rg and Ra and using the neces-
sary condition for beam focusing from point to point
r12 = r34 = 0 (r12 corresponds to the coordinate x,
r34 – to the coordinate y), we can write the equations
for the parameters a and g:

g = −am11 +m12

am21 +m22
,

am11 +m12

am21 +m22
=
am33 +m34

am43 +m44
,



where mij – elements of the matrix M. It is necessary
to note that elements r11 and r33 describe the increment
(for r11 > 1, r33 > 1) or the decrement (for r11 < 1,
r33 < 1) for beam size on the target [Andrianov, 2004].
Solving the equation (5) and substituting into the (3) we
obtain the matrix S(s) on the target. Thus, the param-
eter g is excluded from the optimization process and
due to the ideology of the matrix formalism [Andri-
anov, 2004], we recorded the focusing condition from
point to point in an analytical form. Further, we can
introduce some restrictions on the other parameters in
order to simplify the optimization process. It is useful
to note that similar simplification can be applied due
to usage of the matrix formalism for beam dynamics
description.

5.2 Conditional objective functions
Using the above described linear approximation we

can express almost all the physically significant beam
characteristics in terms of the elements S(s)-matrix (for
example,

√
S11 is the maximum value of the coordinate

x in envelope line, then element
√
S33 is the maximum

value of the coordinate y).
Let us suppose that Sopt(s) is an optimal envelope ma-

trix of the beam on the target. Then the deviation of
“output” S(s)–matrix from optimal can be expressed
in terms of some metric:

∥ S(s)− Sopt(s) ∥6 ε,

where ε is determined by the nature of the specific
physical problem. Assuming that the beam particles
can move only in the working channel we can included
the searching for parameters values that satisfy in the
whole plane s.
Resulting set of feasible solutions will require from

the system designer to select the optimum solution (or
a solutions subset) in terms of simplicity implementa-
tion, cost and other operational constraints. The corre-
sponding analysis the set of optimal control parameters
one can choose the values that correspond to the best
tolerances (see, for example, [Andrianov, 2004; Podzy-
valov, 2008]). This ensures that the adjustment will be
stable enough for a small drift of the parameters in the
manufacturing and assembling processes of the system
and in its exploitation.

5.3 Graphical Interpretation Results
An important aspect of any optimization process is a

graphical representation of the optimization variables.
However, in the case of a large number of parameters,
the user of a special optimization tools must be able
to choose what parameters should be reflected graphi-
cally.
In the system described above, we are interested in

a graphic study of the magnetic field gradient k1, k2
of the lenses. Selection of optimal solutions of these
parameters (or some subset) depends on the functional

F = R2
11+R

2
33, which minimizes the size of the beam

on the target. Beam characteristics on target incorpo-
rated in the matrix R(s) from equation (5).
Shown in Fig. 2 the dependence of magnetic field gra-

dients k1, k2 suggests that there are wide and narrow
areas, satisfying the functional F ≤ 1 (this means that
the beam particles do not deteriorate during the chan-
nel).

Figure 2. The magnetic field lens gradient values (for the
functional F ≤ 1).

To choose the optimal solution we use the data re-
flected in Fig. 3, 4, which displays the dependence of
the each lenses gradient from the functional F . It is
seen that most of the solutions for the gradient k1,
which have the minimum values of functional F are
located at intervals [1.2,. . . ,1.8; 2.4, . . . ,2.8]. For the
gradient k2 the minimum values of functional F are lo-
cated at interval [0.6,. . . ,1.2].

Figure 3. The magnetic field gradient k1 (for the functional
F ≤ 1).



Figure 4. The magnetic field gradient k2 (for the functional
F ≤ 1).

Further analysis of these intervals can be made by
specifying these intervals as the initial for the global
optimization algorithm. This is possible thanks to
a flexible approach in the program complex creating
“Global Optimization Approach” (see Fig. 5.), which
allows you to create different structures, configure a
global optimization algorithm, graphically display the
results and further investigate the extreme suspicious
areas.

Figure 5. Program complex screenshot “The global opti-
mization approach”.

The corresponding applied software include described
global optimization concept ideology and implies to
use distributed and parallel technologies for necessary
computing. This allows the researcher to immerse
themselves in the solution of the problem and make the
system modeling process flexible and manageable.

6 Conclusion
The approach and its implementation presented in this

paper allow to an experienced researcher quickly find
the optimal sets in parameters spaces with acceptable
features of the beam, as a novice researcher can learn
on test problems to investigate such problems and to

gain experience. The problem described the ion-optical
systems optimization in term of the matrix formalism.
It is shown practicability of the using the global op-
timization approaches in such considered problems.
This ideology implies to use technologies of the par-
allel programming and can be solved by them.
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