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Abstract 
This paper considers the principal assumptions and 
decisions that have to be made when developing reduced 
order models of problems in engineering dynamics. The 
work has been motivated by a perception that information 
loss can be considerable when applying approximate 
analytical solution methods, despite good solutions per se 
being obtainable with appropriate application. The lost 
information relates to the evolution of solutions and the 
consequential inheritance issues. Simplifications, which 
are normally routinely made during approximate 
analytical solution, irrespective of the method used, can 
remove an additional layer of information from the 
solution. This information is apparently redundant when 
structural simplification is the principal objective, but if it 
is retained it can show how the solution has come 
together, all the principal influences that are acting, and 
how they interact with each other. This paper takes 10 
sample problems in engineering dynamics and highlights 
the many common and different modelling assumptions 
that are needed to generate viable and realistic equations 
of motion, from which inheritance based approximate 
analytical solutions can be generated, and ultimately 
visualised. 
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1. Introduction 
This paper summarises the main modelling issues that are 
prevalent when setting up reduced order models in 
engineering dynamics. Ten different model derivation 
problems have been investigated, both from the literature 
and also as derived by the authors, and the modelling 
assumptions and decisions are summarised. In particular 
the commonalities between problems are highlighted, as 
are the major differences. Since the objective in each case 
is to generate a definitive, but pragmatically solvable 
analytical model, some comparisons are also offered 
between the problems studied and the modelling 
approaches taken. 
 
2. Introduction to the problem set 
Ten different problems are chosen and the modelling 
assumptions are given in the subsections that follow. 

Further modelling strategy options are also discussed in 
the next section. 
 
2.1 Forced Nonlinear Cantilever Beam 
This first problem is the ubiquitous forced nonlinear 
cantilever beam with a lumped end mass. Background 
assumptions are that the beam is mass-less, with linear 
elasticity on the basis of Euler-Bernoulli modelling, it is 
definable in modal space, and that this is reducible down 
to one bending mode, with one associated modal co-
ordinate u0 and the mode is represented by the static 
deflection curve for a cantilever, normalised at the free 
end. Linear viscous damping ξ is used and a cubic 
nonlinear stiffness term intervenes as a result of large 
deflections. The system is excited by a harmonic force 
applied directly to the beam, . There is one ODE 
equation of motion in the first bending mode, and this can 
be nondimensionalised by using convenient length and 
time scales, in this case the length of the beam l and the 
reciprocal of the excitation frequency Ω. The problem is 
attributable to the authors here [Cartmell, 2006]. The 
physical form of the problem is: 
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2.2 Forced Double Pendulum 
This is a different class of problem involving coupled 
elements which are both assumed to act as rigid bodies, 
m1 and m2, uniform in geometry but of potentially 
different lengths, l1 and l2, and uniform mass distribution. 
Absolute angular co-ordinates are used for each 
pendulum, referred to the vertical stable equilibrium, with 
linear viscous damping, C1 and C2, assumed at the joints. 
The system is planar, orientated vertically, and is excited 
by horizontal harmonic support motion, cosA tΩ . Two 
term McLaurin expansions are used to remove explicit 
trigonometrical functions and then the equations can be 
nondimensionalised in terms of mass, length, and time. 
The nondimensionalisation is based on the length and 
mass of one pendulum (arbitrarily chosen) and the 
reciprocal of the excitation frequency Ω. This is a very 
well known problem frequently used in undergraduate 



teaching. The physical model is attributable to the authors 
in the form used here [Forehand and Cartmell, 2006(a)], 
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2.3 Parametrically Excited Nonlinear Pendulum     
In this problem we encounter a vertically orientated mass-
less pendulum with a lumped end mass m, under vertically 
orientated harmonic support motion, , providing 
parametric excitation. The system is assumed to be 
viscously damped, β, and planar, with one absolute 
angular co-ordinate, referred to the vertical stable 
equilibrium. The model is nondimensionalised in time and 
the natural frequency is scaled to unity, using its 
reciprocal. A two-term McLaurin expansion is used for 
the trigonometrical term. This is also a very well known 
problem, treated by many writers. Thomsen’s form of the 
physical problem [Thomsen, 1997] has been used, 
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2.4 Flexible Rotor with Snubber Ring 
The rotor is driven by an unbalanced mass and is 
represented by a pair of orthogonal translational co-
ordinates originating from the centre of the rotor when in 
its equilibrium position. In that sense they are absolute co-
ordinates and they are nondimensionalised using a radial 
gap distance γ which is defined as the difference between 
the radii of the snubber ring and rotor. The time is 
nondimensionalised using the reciprocal of the natural 
frequency of the rotor, leading to unity scaled natural 
frequency.  The system is assumed to operate under 
predominantly linear viscous damping c, and at rotor 
speed ω. This problem is attributable to [Karpenko, 
Wiercigroch and Cartmell, 2002], 
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where 2 2( ) ( )x yR x yε ε= − + − , cos ( ) /xx Rψ ε= − , 

sin ( ) /yy Rψ ε= − , M =
=

 total rotor mass plus unbalance 
and  unbalance mass. m
 
2.5 Chelomei’s Pendulum 
A two degree of freedom problem in which an inverted 
pendulum is fitted with a floating sliding mass. The 
position of the mass along the pendulum is represented by 
a translational co-ordinate measured along the length of 
the pendulum from the based pivot point, and the 
orientation of the pendulum is given by an absolute 
angular co-ordinate measured from the vertical 

equilibrium. The system is parametrically excited by a 
vertically directed harmonic base motion, 

( ) sin( )Z t Q t= Ω , and linear viscous damping is assumed 
for both motions. McLaurin expansions are not used 
initially to remove the explicit presence of the 
trigonometrical terms, but appear later during the ordering 
phase. The equations are nondimensionalised for the 
translational mass (of mass M) position co-ordinate, U(t), 
by using the pendulum (of mass m) length, l, and the 
reciprocal of the natural frequency of pendulum 
oscillation. The main proponents of this problem are 
[Chelomei, 1983], [Blekhman & Malakhova, 1986] and 
[Thomsen, 1997] from which we take inspiration here, 
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An order of magnitude analysis by the authors has shown 
that the solution to equations (7) and (8) is highly unlikely 
to demonstrate Chelomei’s observations, without the 
involvement of a further, horizontal, excitation. 
  
2.6 Parametrically Excited Cantilever Beam 
This beam has a rectangular end mass fitted to the free 
end. The other end is attached to a rigid support which is 
excited by a motion in the direction of the stiff plane of 
the beam, thereby parametrically exciting it. The motion 
of the beam is defined in modal space, using two bending 
co-ordinates and one torsion co-ordinate. First and second 
bending mode shapes are used with normalisation defined 
by a problem-specific inner product. The torsion mode is 
similarly treated. The modal translations and the 
parametric excitation are nondimensionalised by using the 
beam length and the time is nondimensionalised via the 
reciprocal of the excitation frequency. Classical linear 
viscous damping is later assumed. This is a well 
established problem, and here it is attributable to the 
authors [Forehand and Cartmell, 2001] in physical, 
undamped form, 

φ +

where the a,b subscripts represent quantities associated 
with the two bending mode coordinates respectively, and 
the B1-9 are mode dependent system constants. 
 
2.7 Autoparametrically Coupled Beams 
In this system two beams are fitted together into an L 
shaped structure. The larger horizontal beam is 
cantilevered out from a substantial support. The smaller 
vertical beam is attached to the free end of the horizontal 
beam and orientated so that its most flexible plane is 
orthogonal to that of the horizontal beam. Two modal co-
ordinates are used to represent bending of the beams, once 
again using normalised mode shape functions. These are 
nondimensionalised using convenient length scales, and 



different treatments for this have been offered in the 
literature, with secondary (vertical) beam length being one 
convenient solution to this. Classical linear viscous 
damping is assumed for each beam. Literature examples 
of this problem, attributable to [Roberts and Cartmell, 
1984] and [Bux and Roberts, 1986] exclude time 
nondimensionalisation, although this could have been 
introduced, either by means of the reciprocal of a beam 
natural frequency or the excitation frequency. The 
excitation frequency is harmonic. The work of [Roberts 
and Cartmell, 1984] is used in this particular discussion, 
as shown, 
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where and are vectors of n 
and N generalised coordinates defining the horizontal 
primary and vertical secondary beams, respectively. 

1[ ,..., ]np p=p 1[ ,..., ]T
Nq q=q

 
2.8 Motorised Momentum Exchange Tether on a 

Circular Orbit 
This problem is included despite the vastly greater scale 
of the system it represents. This is a large rigid body 
operating in space for the purpose of imparting energy to 
mass payloads through spin about the system’s local 
centre of mass. There is no damping in this system other 
than negligible internal friction within the excitation 
device. In this example the tether is excited by a harmonic 
torque. A mass discretisation is applied to the tether to 
remove singularities when the numerator and denominator 
of two potential energy terms tend to zero in the case 
where the response of the tether is an integer value of π. 
This discretisation generates a system in which the tether 
subspans of length L and density ρ are represented by n 
lumped masses. Expansion of the nonlinear potential 
energy terms and neglecting terms of order 4 and above in 
the spin co-ordinate leads to a Duffing type equation. 
Normalisation of the linear natural frequency of tether 
libration and time nondimensionalisation using the 
reciprocal of this leads to an undamped Duffing equation 
with harmonic forcing. This problem is by the authors 
[Cartmell, Forehand, D’Arrigo, McKenzie, Wang and 
Metrikine, 2006], and is stated as follows in its 
fundamental physical form, 
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2.9 Automotive Disk Brake Vibration  
A rotating frictional slider on a circular disk is taken with 
vertical and horizontal slider stiffness and damping built 
into the model. Oscillatory motion of the slider as it is 
driven around the disk at constant angular velocity is 
defined by an angular co-ordinate, and transverse motion 
of the slider, which equates to displacement of the disk at 
the contact point, is represented by a displacement co-

ordinate which is transformed into modal space by means 
of a series form modal expansion, for a finite number of 
modes. Excitation is provided by the effect of friction Fθ 
between the slider m and the disk. Some algebraic 
reorganisation of the problem is necessary to get to the 
ODE model in modal space. The model is 
nondimensionalised in time by means of the reciprocal of 
the critical speed of the disk. Classical linear viscous 
damping is assumed for the transverse motion at the 
contact point between  slider and disk. The analysis in this 
particular version of this well researched problem is 
attributable to [Chan, Mottershead and Cartmell, 1994] 
and [Ouyang, Mottershead, Cartmell and Friswell, 1998]. 
In-plane and transverse motions are governed by, 
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2.10  Stephenson-Kapitsa Pendulum 
This is a simplification of Chelomei’s pendulum (see 
problem 2.5), or conversely Chelomei’s pendulum could 
be said to be a specialisation of the Stephenson-Kapitsa 
problem. The difference is that the floating mass is absent 
in the case of the Stephenson-Kapitsa pendulum [Kapitsa, 
1951; Acheson, 1995] and that the system can be shown 
to be capable of stabilisation in the upright position when 
the support is oscillating with high frequency and small 
amplitude, as discussed by [Thomsen, 1997]. The 
pendulum can be considered as a mass-less link with a 
lumped mass at the end, with vertical orientation of the 
pendulum with the pivot at the bottom, and vertically 
directed parametric excitation. The equation of motion 
contains a trigonometrical term which is expanded by 
means of a two-term McLaurin expansion. Linear viscous 
damping is assumed and a time nondimensionalisation is 
included, based on the reciprocal of the excitation 
frequency. This version of the problem is due to [Kapitsa, 
1951] and [Acheson, 1995], with some additional notation 
inserted by the authors, 
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by 1/freq y y y y y y n y y y 
by mass n y n n n n n n n n 
Normalis.           
Frequency n n n y n n n y n n 
Table 1. Problem set 1-10 along the top, noting 
discretisation refers to physical discretisation (of mass 
properties), and underscore, y signifies either yes or no. 
 
It is evident from the problem set that the physical 
assumptions are entirely problem-specific, but that many 
of them transcend this, assumptions of linear viscous 
damping and harmonic excitations being cases in point, 
and are usually made for reasons of mathematical 
simplicity rather than engineering desirability. 
Transformations from physical to modal space are 
frequently simplifying, as is nondimensionalisation by 
length and time. Mass nondimensionalisation is generally 
less common, as is normalisation by natural frequency. 
Problems 2.3 and 2.10 required relatively little formal 
consideration to obtain a workable ordering scheme 
because of their mechanical simplicity. All the other 
problems involved considerably more effort to get a 
scheme which properly reflected the working of the 
mechanical system, the need for mathematical 
consistency, and reasonable tractability.  
 
3. Equation Ordering for Perturbation Solution 
3.1 Forced Nonlinear Cantilever Beam 
Continuing from 2.1, we note that the general beam 
deflection is u x  where the static 
deflection shape . The nondimensionalisation of 
equation (1) is given by 
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In practice, and so 0 ,u l 1µ

,ε
. If we introduce a small 

nondimensional parameter  and retain the use of this 
throughout the rest of the paper, such that ,µ εη=  and 
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 then we get the nonlinear 
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1

2µ ε η= and 
1

2 ,0F ε= 0F the nonlinear terms are to . 
This leads to, 

( )εO

2

2 2 2 2 2 2 0

0 02 2

36
2 [ ( ) ]

25

hl F

ml
cosη ξω η ε η η η η ε η ω η ε τ′′ ′ ′′ ′+ + + + + =

Ω Ω
 

                                                                                       (19) 
or,  alternatively, we get, 
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noting that the damping can be ordered as required.   
 
3.2 Forced Double Pendulum 
Equations (2) & (3) can be nondimensionalised and 
ordered as follows, 
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where the trigonometrical terms have been expanded 
using two-term McLaurin expansions,  '  denotes 
differentiation w.r.t. nondimensional time  and ,tτ = Ω
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3.3 Parametrically Excited Nonlinear Pendulum 
In this case we introduce  and to 
nondimensionalise equation (4) and the ordering is 
informal, set up so that the damping, the parametric 
excitation, and the cubic nonlinearity are all , i.e., 
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We could equally have chosen different ordering schemes. 
 
3.4 Flexible Rotor with Snubber Ring 
This is a more difficult problem, in which considerable 
formal analysis is required to get a consistently ordered 
pair of equations from equations (5) and (6). We use, 
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Initially, the damping and forcing terms are neglected as 
they can be ordered in an ad hoc manner later. The forcing 
coefficient can be made arbitrarily small by reducing the 
o.o.b. mass m relative to the rotor M. The nonlinear terms 
are ˆ ˆˆ ˆ ˆ( )(1 1 ),x 1K x zε− − ≥z  and ˆ ˆˆ ˆ ˆ( )(1 1 ),y 1K y zε− − ≥z  
in equations (24) and (25). Ordering these terms starts 
with the assertion that K̂ is small, therefore k , but 

 for the nonlinear terms to take part, so  is , 
which means that 
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challenges the notion of the necessity for a small 
perturbation about a linear solution. To make progress the 
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                                                                                (26)(27) 
It should be noted that the quantity K̂ in equations (26) 
and (27) contains Heaviside functions but that there is a 
precedent for processing such terms within multiple scales 
perturbation solutions in [Warmiński, Litak, Cartmell, 
Khanin, Wiercigroch, 2003]. 
 
3.5 Chelomei’s Pendulum 
The system defined by equations (7) and (8) is also very 
demanding to treat consistently. If the sliding mass (i.e. 
M) is removed the problem reduces to the Kapitsa 
pendulum case, and it should also be noted that 
Chelomei’s observation of an equilibrium position for M 
has not yet been corroborated, theoretically or 
experimentally. Thomsen and Tcherniak showed that 
resonant flexural vibrations of the pendulum rod and small 
symmetry-breaking in the form of off-vertical excitations, 
were needed to reproduce Chelomei’s results, and that 
constant tuning of the excitation frequency is needed to 
keep the pendulum upright and the mass floating 
[Thomsen and Tcherniak, 2001]. Considerable work by 
the authors of this current paper on a variant of this 
problem, with added horizontal support motion, has 
shown that a systematic ordering of equations (7) and (8) 
leads to, 
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Note that we have used  together 

with other definitions, 
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2
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3) ),ml1 / ((γ =  21

31 1 (( ) ),c mlβ ω=  and, 
 A more compact result is obtained if the 

nondimensionalisation is based on the excitation 
frequency  rather than the natural frequency of the 
pendulum, 

2 2 / .cβ ω=

Ω
2 / 3g l=ω

( )O ε

andv hq q

, noting that is likely to be 
. This produces more natural looking equations and 

removes multiple appearances of 1  which would 
otherwise be obtained. The excitations in equations (28) 
and (29) are hard because, although the amplitudes 

are small, the excitation frequency needs to be 
high enough for the excitation terms to appear in the 
lowest order perturbation equations in any subsequent 
analysis. 
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3.6 Parametrically Excited Cantilever Beam 
By introducing the substitutions 1,2 1,2u uε=  and 1 1φ εφ=

( )ε
, 

classical linear viscous damping terms to , and 
stating the linear natural frequencies as 

O
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ordered equations of motion, as follows, 
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                                                                          (30)(31)(32) 
Numerical work [Cartmell and Su, 2007] and [Forehand, 
2007] has shown that in one installation and 

, which in that case vindicates the assertion that 
7 0/B m ω<

1ω ω<

7 0( /B m

( )O ε

2,1) (u O ε→ )

cos ,

. We do not make any further claims 
for generality at this stage, but here this step obviates the 
need for normal mode analysis at zeroth order 
perturbation, which is useful. The excitation terms emerge 
at , which is also consistent with the specific 
experimental system used in [Cartmell and Su, 2007].  
 
3.7 Autoparametrically Coupled Beams 
A Galerkin representation for each beam, based on 
selected in-plane and out-of-plane bending modes, 
together with nondimensionalisation of length, assumption 
of classical linear viscous damping, and harmonic 
excitation, leads to, 
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                                                                               (33),(34) 
where X and Y are nondimensional responses at two 
observation co-ordinates for in and out of plane motion, 
and is a reference scale factor. Formal definitions for 
the excitation force 

0a

0f , , ε µ , and γ , and involving the 
modes shapes of the responses of the two beams, are 
given in [Roberts and Cartmell, 1984].  
   
3.8 Motorised Momentum Exchange Tether on a 
Circular Orbit 
The numerators and denominators of the last two left hand 
side terms in equation (14) all tend to zero as ψ π→ , so 
L’Hôpital’s rule can be used to obtain the finite limits as 
ψ π→ . These last two left hand side terms can be 
discretised so that the tether sub-spans are each 
approximated by n discrete masses. By expanding the left 
hand side of the discretised form of equation (14), 
neglecting terms  , choosing a fixed value for n, 
nondimensionalising the time, , with 

4( )O ε≥
tτ ω= 2 Cω = 2 1C  

and  [Cartmell, Forehand, D’Arrigo, 
McKenzie, Wang and Metrikine, 2006], we obtain, 

/ωΩ = Ω

3
3 2 0 2( ) ( )cosC C T Cψ ψ ψ′′ + + = Ωτ                           (35) 

where are given in full in the reference. The steps 
needed between equations (14) and (35) are considerable, 
and involve an algebraically and numerically consistent 
order of magnitude analysis. It should be noted that the 
version in the reference cited also contains a parametric 
excitation term which is absent here. Equation (35) is an 
undamped Duffing equation with hard excitation.  
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3.9 Automotive Disk Brake Vibration 
We apply a modal discretisation scheme to equations (15) 

and (16), whereby , and 
0
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scheme is informal, resulting in this system of equations: 
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The kth natural frequency is denoted by , and is the 
first critical speed of the disk. Assumptions in equation 
(36) are: the friction force does not reverse in direction 
and the mass slides in one direction without sticking. 

klω crω

 
3.10 Stephenson-Kapitsa Pendulum 
We introduce the following into equation (17) in order to 
develop the ordered version from which we can apply a 
multiple scales expansion, , 0tτ ω= 0 / /g lω ω= , 

/k l gγ = , θ εθ= , q qε= , ( )γ , from 
which the following equation emerges, 

ω ε γ ω=

2 2( / ) ( cos )( (1 6) ) 0qθ ε γ ω θ ω ε τ θ ε θ−+ − + − 3 =      (37) 
If the only phenomenon of interest is the stability of the 
upright pendulum the linear version of equation (37) is 
used; i.e. a damped Mathieu equation [Thomsen, 1997].  
 
4. Conclusions from the Problem Set 
The sample set was arbitrarily selected and strongly 
reflects the authors’ interests. Table 1 shows that 30% of 
the problems contain a mass-less element, 30% involve 
McLaurin expansion, 40% are expressed in modal space, 
40% are SDOF, 90% assume classical linear viscous 
damping, 90% assume harmonic excitation, 10% involved 
a necessary discretisation, all were nondimensionalised in 
some way, 20% were frequency normalised. 
Nondimensionalisation is universally applicable but 
frequency normalisation is not. Damping and excitation 
representations are universally simplifying, but not 
necessarily accurate. Assumptions of mass-lessness are 
for ease of modelling, not accuracy. Mass discretisation is 
only used when mathematically necessary. Consistency 
throughout each modelling procedure is vital. There is 
always a lot of highly problem dependent compromise 
between tractability (solvability) and accuracy. 
 
5. Solution Inheritance and Information Structures 
This is a part of a larger programme of research into the 
information flows during modelling and solution. The 
paper shows that modelling procedures are highly 

problem specific, but there are still common themes. The 
goal is compactness and tractability without loss of 
information. Tracking of terms and inheritances through 
the modelling and solution stages reveals considerable 
hidden information. This can greatly enhance the value of 
the approximate analytical model and solution approach.  
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