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Abstract
This paper illustrates the application of an adaptive

flight control architecture to a scale quad-rotor. For au-
tonomous VTOL (Vertical Takeoff and Landing) flight,
it is common to separate the control problem into an
inner fast loop that controls attitude and an outer slow
loop that controls the trajectory of the VTOL. In this
paper we augment a conventional PD controller con-
ceived mainly for hovering, with an adaptive element
using a real-time tuning single hidden layer neural net-
work in a inner-outer loop combined architecture to ac-
count for model inversion error cancellation, issued in
the feedback linearization process. The results shown
in simulations reveal the superior performance of the
augmented controller in tracking maneuvers.
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1 Introduction
The potential for unmanned aerial vehicles (UAVs) in

applications such as environmental monitoring or fire
prevention has been well established. A quad-rotor
is an underactuated, dynamic system with four input
forces and six output coordinates. Its actuators are four
fixed pitch angle rotors. This configuration increases
payload capacity and maneuverability. The basic mo-
tions of a quad-rotor are generated by varying the ro-
tor speeds of all four motors, thus changing the lifting
forces. The quad-rotor tilts toward the direction of the
slow spinning rotor, which enables acceleration along
that direction. The spinning directions of the rotors are
set to balance the moments, therefore eliminating the
need for a tail rotor. Quad-rotors, as any other UAV’s,
are affected by aerodynamic forces in strong non-linear
coupling, which can be considered uncertain, and also
by external disturbances such as wind gusts. In order
to conveniently control the quad-rotor it is required to
meet the essential stability, robustness and desired dy-
namic performance, being able to adapt to changing pa-

rameters and environmental unmodeled disturbances.
In this paper, a tracking controller is designed for the
nonlinear quad-rotor model. In a first stage, the con-
troller consists of two linear proportional plus deriva-
tive (PDs) controllers in an inner-outer loop configura-
tion, assuring an ideal tracking capability without ex-
ternal perturbations. The resulting closed loop system
is highly sensitive to perturbations, so the initial lin-
ear controller is augmented by an adaptive action, in-
troduced by a single hidden layer (SHL) feed forward
neural network (NN) acting also in an inner-outer ad-
ditive arrangement, regarding the linear control. The
performance of the augmented system is greatly im-
proved, being capable of adapting to external unmod-
eled perturbations or even to internal unmodeled dy-
namics [Salazar, Palomino, Lozano, 2005]. The struc-
ture of this paper is as follows: section 2 presents
some basic ideas on approximate feedback lineariza-
tion [Nakwan, 2003; Nakwan, Calise, 2007]. Sec-
tion 3 presents the quad-rotor modeling according to a
Lagrangian formalism [Castillo, Lozano, Dzul, 2005].
Tracking formulation is presented in section 4. In sec-
tion 5 a case study with simulation results is presented
and finally, in section 6 the conclusions are presented.

2 Approximate System Linearization
One common method for controlling nonlinear dy-

namical systems is based on approximate feedback lin-
earization [Isidori, 1995], which depends on the rela-
tive degree of each controlled variable. For newtonian
systems like the quad-rotor in a simplified approach,
the regulated variables of interest, here represented as
the vectorq, have relative degree two. The control vari-
ables are represented by the vectoru.

q̈ = f(q, q̇, u) (2.1)

A pseudo controlν is defined such that the dynamic
relation between it and the system state is linear.

q̈ = ν (2.2)
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Figure 1. NN augmented adaptive control architecture

where

ν = f(q, q̇, u) (2.3)

Since the functionf(q, q̇, u) is not exactly known, an
approximation is used which is invertible regardingu

ν = f̂(q, q̇, u) (2.4)

resulting in

q̈ = ν + ∆(q, q̇, u) (2.5)

where the modeling error is represented by

∆(q, q̇, u) = f(q, q̇, u) − f̂(q, q̇, u) (2.6)

So the effective actuator displacement can be calcu-
lated as

û = f̂−1(q, q̇, ν) (2.7)

Supposing in 2.5 that∆(q, q̇, u) = 0 we can proceed in
the stabilization problem, choosing a linear controller,
a PD for instance, that will locally solve the regula-
tion problem. A SHL neural network with conveniently
adapted weights will be responsible for modeling error
cancellation. Including a command path generatorC,
the former linear controller can be augmented through
the architecture depicted in fig. 1. The pseudo control
signal in 2.5 is the sum of three components

ν = q̈r + νPD − νa (2.8)

whereq̈r is generated byC, νPD is generated by the
PD controller andνa is generated by the adaptive ele-
ment introduced to compensate for the model inversion
error. The tracking error is computed as

e =

[

qr − q
q̇r − q̇

]

(2.9)

and the PD controller can be represented by

νPD =
[

Kp Kd

]

e (2.10)

2.1 Adaptive Element
The adaptive element is implemented by a SHL-NN

with conveniently tuned weightsV,W such that

νa = W⊤σ̄(V ⊤q̄) (2.11)

with q̄ = [ν, q]. Given a sufficient number of hidden
layer neurons and appropriate inputs, it should be pos-
sible to train a SHL-NN [Hornik, Stinchcombe, White,
1989] on line to cancel the effect of∆. The weight
matrices are

V =











v0,1 v0,2 · · · v0,n2

v1,1 v1,2 · · · v1,n2

...
...

. ..
...

vn1,1 vn1,2 · · · vn1,n2











W =











w0,1 w0,2 · · · w0,n3

w1,1 w1,2 · · · w1,n3

...
...

.. .
...

wn2,1 wn2,2 · · · wn2,n3











(2.12)

Here n1, n2, n3 are the number of inputs, hid-
den layer nodes and outputs. Alsōσ(ξ) =
(1, σ(ξ1), · · · , σ(ξn1

))⊤. The scalar functionσ is the
sigmoidal activation function

σ(ξ) =
1

1 + e−αξ
(2.13)

2.2 Contractibility
The transformation 2.11 must be contractive regard-

ing νa. Note that∆ depends onνa throughν, whereas
νa has to be designed to cancel∆. Hence the ex-
istence and uniqueness of a fixed point solution for
νa = ∆(q, q̇, νa) must be assumed. A sufficient con-
dition is to ascertain that the mapνa → ∆(q, q̇, νa)
is a contraction over the entire input domain of inter-
est, or‖∂∆/∂νa‖ < 1. This condition is equivalent to
[Nakwan, 2003].
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2.3 Tracking Error Boundedness
The tracking error dynamics is given by

ė = Ae + B(νa − ∆) (2.15)

with

A =

[

O I
−Kp −Kd

]

, B =

[

O
I

]

(2.16)
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Figure 2. quadrotor representation

whereI andO are a suitable identity and null matri-
ces respectively. Consider the system 2.1, the inverse
law 2.7 and the contractibility property, as well as the
adaptation laws

Ẇ = −[(σ̄ − σ̄′V ⊤η̄)r⊤ + κ ‖e‖W ]ΓW

V̇ = −ΓV [η̄(r⊤W⊤σ̄′) + κ ‖e‖V ]
(2.17)

where

σ̄′(ẑ) ≡ ∂σ̄(z)

∂z

∣

∣

∣

z=ẑ
(2.18)

is the Jacobian matrix andr = e⊤PB. Also P ≻ 0 is
the unique positive definite solution for the Lyapunov
equation

A⊤P + PA + Q = 0 (2.19)

for any convenientQ ≻ 0. A andB are defined in
2.16. Given 2.17 withΓW ≻ 0, ΓV ≻ 0 and κ >
0, according to [Nardi, 2000; Yoonghyun, 2005] the
tracking errore uniform boundedness is assured.

3 Simplified Modeling - Lagrangian Formulation
The generalized coordinates for the quad-rotor areq =

(ξ, η) whereξ = (x, y, z), denote the position of the
center of mass concerning the inertial frame andη =
(ψ, θ, φ) are the three Euler angles (yaw, pitch and roll)
representing the quad-rotor pose. The total quad-rotor
kinetic energy is given byT and the potential energy is
given byV

T =
1

2
mξ̇⊤ξ̇ +

1

2
ω⊤

b Jωb, V = mgz, ωb = Q(η)η̇

(3.1)
Herem denotes the mass of the quad-rotor. Also

ωb = R(η)Ṙ⊤(η) = Q(η)η̇ ⇒ Q(η) =





−sθ 0 1
cθsφ cφ 0
cθcφ −sφ 0





(3.2)

whereR(η) is the transformation matrix representing
the quad-rotor pose.

J =





J1 J12 J13

J12 J2 J23

J13 J23 J3



 , I(η) = Q(η)⊤JQ(η) (3.3)

Here I(η) is the inertia matrix regarding the inertial
frame. The change from an inertial to a local frame
for the quad-rotor is done according to

R(η) =





cθcψ sθsψ −sθ

cψsθsφ − sψcφ sψsθsφ + cψcφ cθsφ

cψsθcφ + sψsφ sψsθcφ − cψsφ cθcφ





(3.4)
wherecθ, sθ stand forcos θ, sin θ, respectively. The
movement equations are obtained as follows,

d

dt

(

∂L

∂ξ̇

)

− ∂L

∂ξ
= fξ

d

dt

(

∂L

∂η̇

)

− ∂L

∂η
= fη

(3.5)

with

fξ = R(η)fb, fη = τη (3.6)

The movement equations have the structure observed
in 2.1

ξ̈ = −m−1f0 + M−1R(η)fb

η̈ = I−1(η)

(

1

2

∂

∂η

(

η̇⊤I(η)η̇
)

− İ(η)η̇ + τη

)

(3.7)
with

fb =





0
0
u



 , f0 =





0
0

mg



 (3.8)

andτη = (τψ, τθ, τφ) being the moments regarding the
local reference frame. Those moments can be modeled
in a first degree of approximation, without considering
rotor dynamics, as:

u =
∑4

i=1 fi

fi = Boω
2
i

τψ = (Do/Bo)(f2 + f4 − f1 − f3)

τθ = l(f4 − f2)
τφ = l(f3 − f1)

(3.9)

wherefi are the lifting forces in each rotor,ωi the cor-
responding angular velocities,l the diagonal distance
between axes of the respective rotors, andDo, Bo are



drag and thrust factors, respectively. The relationship
between{fb, τη} and rotationsωi is straightforward.

ω2
1 =

1

4BoDol
(Dolu − 2Doτφ − Bolτψ)

ω2
2 =

1

4BoDol
(Dolu − 2Doτθ + Bolτψ)

ω2
3 =

1

4BoDol
(Dolu + 2Doτφ − Bolτψ)

ω2
4 =

1

4BoDol
(Dolu + 2Doτθ + Bolτψ)

(3.10)

4 Tracking Controller
Being Pr = (ξr, ηr), P = (ξ, η) the reference and

final trajectories and defininge = Pr − P , we will be
able to establish

ëξ = ξ̈r + m−1f0 − m−1R(η)fb

= νξ

= −kpξeξ − kdξ ėξ

ëη = η̈r − I−1(η)

(

1

2

∂

∂η

(

η̇⊤I(η)η̇
)

− İ(η)η̇ + τη

)

= νη

= −kpηeη − kdη ėη

(4.1)
with (νξ, νη) the pseudo-control components and
kpξ, kpη, kdξ, kdη positive matrices. From

ξ̈r + m−1f0 − m−1R(ηo)fb = νξ (4.2)

follows that

ηo =























ψo = ψr

θo = arcsin

(

ẍr − νξx

u

)

φo = arctan

(

ÿr − νξy

z̈r + g − νξz

)

u = m
∥

∥

∥
ξ̈r + m−1f0 − νξ

∥

∥

∥

(4.3)

Calling now

∆η =





0
θr − θo

φr − φo



 (4.4)

the error on theη coordinates is corrected, resulting in

νη = −kpη(eη − ∆η) − kdη ėη

which defines the control law

τη = İ(η)η̇ − 1

2

∂

∂η

(

η̇⊤I(η)η̇
)

+ I(η) (η̈r + kpη(eη − ∆η) + kdη ėη)
(4.5)

C
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Figure 3. Augmented Linear Controller with an Adaptive SHL-NN

which will stabilize thePr trajectory tracking with
a bounded error. In figure (3) the structure of the
controller is shown, consisting of two proportional-
derivative terms, namelyPDξ, PDη where Sξ, Sη

represent the operations described in equations 4.2 and
4.5 respectively.QR represents the plant (quad-rotor)
andC the generator of trajectory commands.

4.1 Adaptive Element
In order to cancel the presence of unmodeled dynam-

ics, two corrective components are added to the control
loops presented in figure (3), which are generated by
the adaptive element SHL-NN =(NNξ, NNη). Let
∆ = (∆ξ, ∆η) be the vector of modeling errors. Equa-
tions (4.1) can be written as:

ëξ = ξ̈r − (ξ̈ + ∆ξ)
ëη = η̈r − (η̈ + ∆η)

(4.6)

By adding to the control effort the adaptive terms
νaξ, νaη the following representation of the error dy-
namics is obtained:

ëξ + kpξeξ + kdξ ėξ + νaξ − ∆ξ = 0
ëη + kpηeη + kdη ėη + νaη − ∆η = 0

(4.7)

which can also be written as

d

dt

(

e
ė

)

=

(

O I
−Kp −Kd

)(

e
ė

)

+B(νa−∆) (4.8)

with

Kp =

(

kpξ O
O kpη

)

, Kd =

(

kdξ O
O kdη

)

B =

(

O
I

)

, νa =

(

νaξ

νaη

)

, ∆ =

(

∆ξ

∆η

) (4.9)

and withe = (eξ, eη). Here again,O, I are suitable
null and identity matrices respectively. If the SHL-
NN output signalνa perfectly cancels∆, then we have
asymptotically stable error dynamics.νa has the struc-
ture

νa =
(

W⊤
ξ σ̄(V ⊤

ξ ξ̄),W⊤
η σ̄(V ⊤

η η̄)
)

(4.10)



Weight propagation forW{ξ,η}, V{ξ,η}, is done accord-
ing to the adaptation laws

Ẇi = −[(σ̄ − σ̄′V ⊤
i q̄)r⊤ + κ ‖e‖Wi]ΓWi

V̇i = −ΓVi
[q̄(r⊤W⊤

i σ̄′) + κ ‖e‖Vi]
(4.11)

with r = (e⊤PB)⊤, andi = {ξ, η}. The represen-
tation of σ̄(V ⊤

ξ q̄) as σ̄, as well as that of̄σ′, is done
for the sake of clarity.ΓVi

≻ 0, ΓWi
≻ 0 are definite

positive matrices andκ > 0 is a real constant, beinḡq
the extended input vector, this is,q̄ = (1, q) whereq is
the input vector.

4.2 Obtaining the Adaptation Laws
Let us consider the Lyapunov function

V(e, Ṽ , W̃ ) =
1

2

(

e⊤Pe

+ tr
(

W̃⊤Γ−1
W W̃

)

+ tr
(

Ṽ ⊤Γ−1
V Ṽ

))

(4.12)
whereP solves the equation

A⊤P + PA + Q = 0, A =

(

O I
−Kp −Kd

)

(4.13)

with −Q andP definite positive. In order to obtain the
adaptation equations (4.11) we must follow the steps
required to proof that, on the error orbits, the following
condition is satisfied:

V̇ ≤ 0 (4.14)

as explained in [Johnson, Kannan, 2002]. The follow-
ing steps are given in order to show the parameters re-
garding an adequate tuning of the controller. The de-
tails of the proof of convergence follow the above men-
tioned reference. Let us consider

ǫ = ν∗
a − ∆ = W ∗⊤σ̄(V ∗⊤q̄) − ∆ (4.15)

whereW ∗, V ∗ are the optimum values that best ap-
proximate∆. The error dynamics is

ė = Ae + B
(

W ∗⊤σ̄(V ⊤q̄) − W⊤σ̄(V ∗⊤q̄) + ǫ
)

(4.16)
Defining nowW̃ = W −W ∗, Ṽ = V − V ∗ and using
the Taylor series expansion ofσ with respect toV in
the neighborhood ofV ∗, which is the optimum value,
we obtain

ė = Ae + B
(

W̃⊤(σ − σ′V ⊤q̄) + W⊤σ′Ṽ ⊤q̄ + w
)

(4.17)

with

w = ǫ − W ∗⊤
(

σ∗ − σ + σ′Ṽ ⊤q̄
)

+ W̃⊤σ′V ∗⊤q̄

(4.18)
Substituting now (4.11) and (4.17) in the expression of
V̇ we have

V̇ = −1

2
e⊤Qe + e⊤PBw − κ ‖e‖ tr

(

Z̃⊤Z
)

(4.19)

where

Z =

(

V 0
0 W

)

, Z̃ = Z − Z∗ (4.20)

Using tr(Z̃⊤Z) ≤
∥

∥

∥
Z̃

∥

∥

∥
‖Z∗‖ −

∥

∥

∥
Z̃

∥

∥

∥

2

and following

[Johnson, Kannan, 2002] there exista0, a1, c3, κ >
‖PB‖ c3 such that

V̇ = −1

2
λmin(Q) ‖e‖2 − (κ − ‖PB‖ c3) ‖e‖

∥

∥

∥Z̃
∥

∥

∥

2

+

+ a0 ‖e‖ + a1 ‖e‖
∥

∥

∥Z̃
∥

∥

∥

(4.21)

and, withZm =
a1+

√
a2
1+4a0(κ−‖PB‖c3)

κ−‖PB‖c3
,

‖e‖ ≥ a0 + a1Zm

1
2λmin(Q)

⇒ V̇ ≤ 0 (4.22)

Thus for convenient initial conditions, the tracking er-
ror e is ultimately uniformly bounded.

5 A Case Study
Adopting a reference path given by

Pr =

{

Vr

Ωr

cos(Ωrt),
Vr

Ωr

sin(Ωrt), h, Ωrt, 0, 0

}

(5.1)
and the parametric valuesVr = 0.2,Ωr = 0.2,m =
2, l = 0.4, J1 = 0.5, J2 = 0.1, J3 = 0.1, n1 =
9, n2 = 3, n3 = 3,ΓVξ

= 20I,ΓWξ
= 20I,ΓVη

=
10I,ΓWη

= 10I,Kpξ
= Kdξ

= 1I,Kpη
=

18I,Kdη
= 2I, κξ = κη = 0.1 and also considering a

perturbationδη such as

δη = (cos(0.5t)), sin(0.7t), cos(0.2t)) (5.2)

added toτη in 4.5, the validity of the proposed con-
troller can be noticed in figures (4,5,6). In figures (7,8)
the neural net weights evolution is shown.

6 Conclusions
This paper presents the adaptive augmentation of a

linear tracking controller. This augmentation prevents
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Figure 4. Circular path tracking without adaptive augmentation

without external perturbations
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Figure 5. Circular path tracking without adaptive augmentation

with external perturbationδη

and cancels unmodeled perturbations, making possible
the adoption of a simplified plant model. This is spe-
cially worth in UAVs and particularly in quad-rotors.
The simulations confirm the robustness of this method-
ology.
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