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Abstract
T hree numerical methods of solution of some time

optimal control problems for a system under phase
constraints are described in the paper. Two suggested
methods are based on transition to the discrete time
model, constructing attainability sets and application
of the guide construction. Third method is based on
the Deikstra algorithm.
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1 Introduction
The paper deals with the time optimal control prob-

lem connected with studying the dynamic system under
phase constraints. The paper continues investigations
in [1-6].
Three numerical methods of solution of some time op-

timal control problems for a system under phase con-
straints are described in the paper. They are polygons
method, grid method and method, based on the Deik-
stra algorithm.

2 Problem Formulation
Consider the controlled moving objectΥ∗ in the m-

dimensional Euclidean space. Denote by the centerO
of moving objectΥ∗ some chosen point insideΥ∗. Ori-
entation of theΥ∗ is fixed. Behavior of the centerO is
described by the equation

ẋ = f(t, x, u), u ∈ P, t ∈ [t0, ϑ], t0 < ϑ < ∞. (1)

Here,x is them-dimensional phase vector of the sys-
tem, u is the control, andP is a compact set in the
Euclidian spaceRr . It is assumed that traditional con-
ditions providing the existing, uniqueness and extend-
ability of solutions of the system (1) at full length of
the interval[t0, ϑ] are satisfied.

Figure 1.

Along with the system (1), a compactsΦ andXf from
[t0, ϑ] × Rm and compactX0 from Φ(t0) are given.
Here the setΦ is a phase constraint for the system (1)
and it has nonempty sectionsΦ(t) = {x ∈ Rm :
(t, x) ∈ Φ}, t ∈ [t0, ϑ]. The setXf plays a role of
a goal set for the control system (1), and theX0 plays
a role of the start set. Let’s consider that sectionsΦ(t)
andXf (t), t ∈ [t0, ϑ], are changed continuously with
a time (see Fig. 1).
By an admissible controlu(t), t ∈ [t0, ϑ], we mean

any Lebesgue measurable function such, thatu(t) ∈ P,
t ∈ [t0, ϑ].

Problem 1. Construct an admissible controlu∗(t),
t ∈ [t0, ϑ], that steers the phase vectorx[t] (trajectory
of the centerO) of the system (1) from theX0 into the
Xf at minimal time so asΥ∗(t) ⊂ Φ(t) , t ∈ [t0, ϑ].

Remark. Exactly solve formulated problem for a gen-
eral case is not possible. By this reason we solve this
problem approximately. Namely we lead a movement
of the centerO of theΥ∗ from theX0 to a some cho-
sen neighbourhood of the setXf . At the same time we
construct a control so as the moving objectΥ∗ is hold
in the given neighbourhood of phase constraintΦ.

3 Scheme of solution
Let’s consider the problem of the moving centerO in-

stead of the moving objectΥ∗. We may do it because
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of fixed orientation of theΥ∗. To perform it the phase
constraint is outlined by theΥ∗. In this case a phase
constraintΦ for theΥ∗ is substituted by a phase con-
straintΦ∗ for the centerO (see Fig. 2).
Define the differential inclusion (DI)F (t, x) as fol-

lowing

ẋ ∈ F (t, x), t ∈ [t0, ϑ], (2)

whereF (t, x) = co{f(t, x, u) : u ∈ P}.
Divide the interval[t0, ϑ]; i.e., specify the partition

Γ = {t0, t1, . . . , tN = ϑ} of the interval[t0, ϑ] such,
that the diameter∆ = max{(ti+1 − ti) : 0 ≤ i ≤
N − 1}, of the partitionΓ is sufficiently small. Further
we will consider system (1) only at time moments of
partitionΓ (see Fig. 3).
Associate a sequence{X̃(ti)} of setsX̃(ti) ⊂ Rm

(attainability sets) with this partition. This sequence is
defined recursively as following

X̃(t0) = X0,
X̃(ti+1) = Φ∗(ti+1) ∩ Z̃(ti+1; ti, X̃(ti)),

i = 0, 1, . . . , Nf − 1.

Here,Z̃(t∗; t∗, x∗) = x∗ + (t∗ − t∗)F (t∗, x∗), t0 ≤
t∗ < t∗ ≤ ϑ, x∗ ∈ Rm; Z̃(t∗; t∗, X∗) =⋃
x∗∈X∗

Z̃(t∗; t∗, x∗). It is assumed that there are in-

stantsti ∈ Γ in the discrete scheme such, thatX̃(ti) ∩
Xf (ti) 6= ∅, andtNf

is the first one (see Fig. 4).
Choose any pointy[tNf

] in theX̃(tNf
) ∩Xf and as-

sign some numberε∗ > 0. Formulate the problem 2
whose solution is the approximate solution of the prob-
lem 1.

Figure 4.
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Problem 2. It is required to construct an admissi-
ble control u∗(t), t ∈ [t0, tNf

], that leads a phase
vector x[t] of the system (1) from theX0 into ε∗-
neighbourhood of the pointy[tNf

] at the instanttNf

so thatx[t] ∈ Φ∗(t)ε∗ , t ∈ [t0, tNf
].

To solve the Problem 2 we also consider the DI with a
small parameterε > 0 :

ẋ ∈ F (t, x) + εQ, t ∈ [t0, tNf
], (3)

whereQ = {w ∈ Rm : ‖w‖ ≤ 1}.
Using greater possibilities of the DI (3) we construct

the Euler polygon for the DI (3), which goes through
setsX̃(ti) at instantsti ∈ Γf and ends at the instant
tNf

in the pointy[tNf
]. HereΓf = {t0, t1, . . . , tNf

}.
This Euler polygon will play a role of a “guide” in

construction of the controlu∗(t), t ∈ [t0, tNf
], solv-

ing the Problem 2 for the system (1). We construct
the Euler polygony[t], t ∈ [t0, tNf

], starting from the
pointy[tNf

] and proceeding to the initial instantt0 (see
Fig. 5).
It is possible to construct the Euler polygon

y[t] = y[ti]+(t−ti)f∗(ti)+(t−ti)εw∗(ti), t ∈ [ti, ti+1],

where f∗(ti) ∈ F (ti, y[ti]), w∗(ti) ∈ Q, i =
0, 1, . . . , Nf − 1. Nodes of this polygon-guide are
points y[t0] ∈ X̃(t0), y[t1] ∈ X̃(t1), . . . , y[tNf

] ∈
X̃(tNf

).
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The following equality is hold:

y[tNf
] = y[t0] +

Nf−1∑
i=0

∆if
∗(ti) +

Nf−1∑
i=0

∆iεw
∗(ti),

where f∗(ti) ∈ F (ti, y[ti]), w∗(ti) ∈ Q, i =
0, 1, . . . , Nf − 1.
Now construct an admissible controlu∗(t), t ∈

[t0, tNf
], that solves the Problem 2.

We construct the controlu∗(t), t ∈ [t0, tNf
] sequen-

tially at steps[ti, ti+1), i = 0, 1, . . . , Nf − 1, of the
partition Γf in the form of a piecewise-constant con-
trol u∗(t) ≡ u∗(ti), [ti, ti+1), i = 0, 1, . . . , Nf − 1.
Suppose thatu∗(t0), u∗(t1), . . . ,u∗(ti−1), correspond-
ing to intervals[t0, t1), [t1, t2), . . . , [ti−1, ti), are con-
structed and the motionx[t], t ∈ [t0, ti], of the system
(1) under the action of the controlu∗(t), t ∈ [t0, ti) is
realized. The vector functionx[t] satisfies the equation
ẋ[t] = f(t, x[t], u∗(t)), x[t0] = y[t0], almost every-
where on[t0, ti].
Consider the point

x[ti] = y[t0] +
i−1∑
k=0

tk+1∫
tk

f(t, x[t], u∗(tk))dt.

We choose the vectoru∗(ti) ∈ P , corresponding to
the semiopen interval[ti, ti+1), from the condition (see
Fig. 6, 7)

‖(x(ti) + ∆if(ti, x[ti], u∗(ti))− y[ti+1])‖ = (4)

= min
u∈P

‖(x(ti) + ∆if(ti, x[ti], u)− y[ti+1])‖.

It is possible to achieve that in the case of sufficiently
small diameter∆ the following is hold:x[t] ∈ Φ∗(t)ε∗ ,
t ∈ [t0, tNf

], x[tNf
] ∈ Oε∗(y[tNf

]).

Figure 7.

4 Numerical methods
Two of tree suggested methods use presented scheme.

Consider a peculiarity of these methods.
Polygons method.
At this method all sets (the moving polygonΥ∗, start

and final sets, attainability sets, the phase constraint)
are presented as polygons. Polygons may be non-
convex. Each polygon is specified by a set of closed
broken lines. One of these broken lines is an exter-
nal border, others form internal border of polygon (in
the common case arbitrary polygon may have number
of holes). All operations of constructing attainability
sets are based on operations with polygons (union, sub-
traction and intersection). Because of all polygons are
formed by number of closed broken lines it allows to
save a lot of memory on personal computer (PC) and
in many cases to safe a time of computations in com-
parison with grid methods. On a contrary, the polygons
method has comparatively complicated logic of com-
putations, require a very high calculation accuracy on
PC and at the current realization can be applied only
for the case on the plane (2-dimensional case).
Example 1.Consider the system

{
ẋ1 = 2, 2x2 + sin(0, 6t)u2,
ẋ2 = 0, 5x2 − 5 sin(x1) + 3 cos(0, 8t)u1 + 2, 5u2,

(5)
where‖u‖ ≤ 1, u ∈ R2, x ∈ R2, t ∈ [0; 10], ∆ =
0, 01. Start conditions are shown on Figure 8
The result of calculation is shown on Figures 9, 10.

Grid method.
Grid method use not only discrete time model, but also

use discrete space model. That is them-dimensional
space is broken with the regular grid and all sets are
presented as sets of cells of this grid. The advantage of
this method is the simple logic of calculations of attain-
ability sets. This future allows to perform calculations
on am-dimensional space. On other side grid method
is very time and memory consuming method (espe-
cially in the case of high precision of calculations). It
leads us to the development of auxiliary methods which
decrease a calculation time and decrease an amount of
necessary PC memory. One of such algorithms is a bor-
der detecting algorithm that allows to exclude internal
cells of sets from the calculation process.



Figure 8. Start conditions.

Figure 9. Transition to the moving centerO.

Figure 10. Attainability setsX̃(ti), polygon-guidey[t] and tra-

jectoryx[t].

Figure 11. Grid presentation of a set on the plane.

Figure 12.

Example 2.Consider the system

{
ẋ1 = −x2,
ẋ2 = x1 + 2 · x3

1 − u,
(6)

whereu ∈ [−1; 1], x ∈ R2, t ∈ [0; 3], start set is a
point(0; 0), ∆ = 0, 02, size of grid sell is equal0, 001.

The result of calculation is shown on the Figure 12.
Left figure was calculated with help of polygon method
(calculation time 12,5 minutes) and right one was cal-
culated by grid method (more then 2 hours).

Method, based on Deikstra algorithm.
For a case of the stationary system (1) where the phase

constraintΦ(t) is fixed in a time we apply some kind
of the grid method – method based on the Deikstra al-
gorithm. Here we also replace the problem of moving
objectΥ∗ by the problem of the moving centerO, but
we don’t apply a three stage method here.
At this methodm-dimensional space is broken with

the regular grid and all sets are presented as sets of cells
of this grid. Instead of previous approaches we con-
sider all cells as vertexes of some weighed graph. The
weigh of each rib of graph is the time that needed for
moving along this rib. Ribs of graph and their weights
are calculated during the calculation process and de-
pend on the system (1) and the form of the setP . Ad-
vantages of this method are comparatively small cal-
culation time and possibility to consider a changeable
orientation of the moving object. In the case of change-
able orientation we have additional dimensions. The
shortcoming of this method is that we can apply this
method only for the case of the fixedΦ(t).
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