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Abstract
Self-coordinated transverse dynamics of the high cur-

rent relativistic electronic bunches used for generation
of wake fields in wakefield accelerating structures with
dielectric filling is investigated. An analytical approach
to solution of self-coordinated beam dynamics is devel-
oped. The received solutions are used for a fast assess-
ment of flight range of a bunch in dielectric wakefield
structure.
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1 Introduction
Wakefield acceleration in dielectric wakefield waveg-

uide structures is one of the most intensively developed
direction among new methods of particle acceleration.
Linear accelerators are considered also as sources of
sequence of electronic bunches for the free electron
laser, which is considered now the major candidate for
creation of ultra short impulses (an attosecond range)
X-ray radiation. Waveguide structures with dielectric
filling excited by high current electronic bunches have
been investigated intensively for the last years [An-
donian et. al., 2012; Jing, Power and Zholents, 2008;
Cook et. al., 2006; Sheinman and Kanareykin, 2008;
Sheynman, Kanareykin and Sotnikov, 2012]. The main
purpose of researches is the prospect of their usage for
development of high gradient linear accelerators.
Development of new methods of charged particles ac-

celeration based on principle of wakefield accelera-
tion, inevitably requires a detailed analysis of the self-
coordinated beam dynamics taking into account both
own and external focusing and deflecting fields.
Wakefield principle is based on a generation by high-

current electron bunch in the waveguide structure (Fig.

1) of an electromagnetic wave with a longitudinal com-
ponent of the electric field up to 100 MV/m. This
wake field is used to accelerate a following low-current
bunch of high energy in wakefield accelerators or elec-
tromagnetic wave is extracted from the waveguide if
structure is used as a radiation source (a free electron
laser).

Figure 1. Waveguide structure with dielectric filling excited by a
high current electronic bunch

Dielectric wakefield accelerating structures are sin-
gle or multilayer dielectric cylindrical waveguides with
outer metal covering and vacuum channel along the
axis. Along with the longitudinal fields there are trans-
verse fields, leading to bunch deflection from the axis
of the waveguide and subsidence of particles on its
wall. It makes impossible to continue the acceleration.
One of the main problems in realization of the wake-

field method is keeping of an intensive electronic bunch
in the channel of a wave guide and prevention of sub-
sidence of particles on its wall. In this regard, a key
task of the wakefield method of acceleration is model-
ing of the self-coordinated movement of the relativistic
electronic bunch passing through dielectric structure in
fields of Vavilov-Cherenkov created by it.
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In recent years in tasks of the analysis of self-
coordinated dynamics of relativistic electronic bunches
in wakefield accelerating structures methods of direct
numerical modeling have been developed. These meth-
ods are a particle – a particle and a particle – a grid.
These methods allow on the set parameters of acceler-
ating structure and an initial condition of the bunch to
simulate process of its movement. The results of cal-
culations are determination of the bunch flight range to
a contact to them walls of accelerating structure, emit-
tance of the bunch, and also transferred or received by
bunch particles energy.
For the analysis of the radial beam dynamics in the ac-

celerating structure, methods of computational experi-
ment are used. To study the self-coordinated beam dy-
namics in dielectric wakefield accelerating structures
we have developed a code “DynPart”.
Analysis of the beam dynamics in the developed soft-

ware is based on the method of macroparticles. In case
of high-current relativistic beams electrostatic approx-
imation inapplicable to determine the wakefield. That
requires for the beam dynamics calculation using the
method of “a particle – a particle”. The number of op-
erations in this method increases with the square of the
number of macroparticles that increases the calculation
time and thus imposes restrictions on their accuracy.
Shortcomings of these methods are considerable du-

ration of calculations for ensuring accuracy of calcula-
tions, insistence to volume of random access memory
and productivity of computer system. Let us note also
that at change of parameters of the bunch and acceler-
ating structure complete recalculation of a problem of
a bunch movement is necessary.
For acceleration of calculations an analytical solu-

tions of the equations of relativistic dynamics and an
optimization algorithm for wakefield calculating were
used.
For design of accelerating structures, solutions of opti-

mization problems in which the structure and the bunch
parameters maximizing efficiency of accelerating pro-
cess are determined are necessary. The solution of
such return tasks based on direct numerical modeling
of dynamics demands repeated carrying out numerical
calculations. Creation of the analytical description of
self-coordinated dynamics of the bunch allowing direct
parametric research of process in this regard is of inter-
est.

2 Beam Dynamics Equations
The description of self-coordinated movement of an

electronic bunch was carried out on the basis of the
equations of relativistic dynamics assuming in the
assumption of lack of the azimuthal movement of
particles. Unlike Kapchirsky-Vladimirsky’s model
[Kapchinsky, 1982] we will consider the Cherenkov
fields created by the bunch in the dielectric waveguide
which have the defining impact on transverse dynam-
ics of the bunch [Sheynman, Kanareykin and Sotnikov,

2012]:

Fr = d (meVrγ)/dt. (1)

Here

Fr = Ffr − eq
∑
i, j

[
ψFr i, j

I ′i (kr i, jr(ζ, t))×

ζ∫
0

f(ζ0) sin (kz i, j (ζ − ζ0)) Ii(kr i, jr(ζ0, t))dζ0

]
,

(2)
where r(ζ, t) is a bunch deflection from waveguide
axes, ζ = z − vt is a distance behind the bunch, Ffr

is a focusing force, e and me are charge and mass of
electron, q and γ are charge and relativistic factor of
the bunch, kz i,j and kr i,j are longitudinal and radial
components of wave vector, ψFr i, j are coefficients of
series, depending on geometry, wave guide filling per-
mittivity and initial charge place [Altmark, Sheinman
and Kanareykin, 2005], f(ζ0) is a function describ-
ing longitudinal charge distribution, Ii(x) are modified
Bessel function of i-th order.
Both numerical and analytical methods were used to

solve obtained equation.

3 Numerical Modeling of the Bunch Dynamics
Numerical solution of equation of the self-coordinated

beam dynamics in dielectric wakefield accelerating
structures (1) in code DynPart is based on next prin-
ciples.
Longitudinal, radial and angular fields are obtained by

integrating the function describing the radiation field at
the point (z, r, θ) from a point charge located at co-
ordinates (z0, r0, θ0), folded with the charge distribu-
tion function on the bunch length. Implementing the
macroparticle method charge distribution function is
realized by generating an array of particles with a given
distribution in space, and the integration is replaced
by summation over the array. At each time point,
the bunch particles coordinates x0, y0, z0 are known,
which are used to calculate fields. New particle coordi-
nates at the next time moment and new velocities can be
found based on the analytical solution of the relativistic
dynamics equations [Sheinman and Kanareykin, 2008;
Sheynman, Kanareykin and Sotnikov, 2012].

z = z0 +
c
a3 [aaz (γ1 − γ0)+

+γ0
((
a2x + a2y

)
βz0 − az (axβx0 + ayβy0)

)
δ
] (3)

x = x0 +
c
a3 [aax (γ1 − γ0) +

+γ0
((
a2z + a2y

)
βx0 − ax (azβz0 + ayβy0)

)
δ
] (4)
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y = y0 +
c
a3 [aay (γ1 − γ0) +

+γ0
((
a2z + a2x

)
βy0 − ay (azβz0 + axβx0)

)
δ
] (5)

βz = ξ/γ1, βx = η/γ1, βy = χ/γ1, (6)

where

δ = ln
∣∣∣a2t+γ0(azβz0+axβx0+ayβy0)+aγ1

γ0(azβz0+axβx0+ayβy0+a)

∣∣∣,
ξ = azt+βz0γ0, η = axt+βx0γ0, χ = ayt+βy0γ0,

az = Fz/(mec), ax = Fx/(mec), ay = Fy/(mec),

a =
√
a2z + a2x + a2y ,

Fx = Fr cos θ − Fθ sin θ + Ff x,

Fy = Fr sin θ + Fθ cos θ + Ff y .

Figure 2. Screen of input data, beam shape and field distribution

Developed software allows you to:

1. Calculate of the single layer cylindrical waveguide
parameters.

2. Simulate dynamics for any number of bunches in
waveguide.

3. Solve the self-consistent equation of dynamics
(1)–(2) in 2D, and 3D models (Fig. 2).

4. Perform parallel computing based on OpenMP for
shared memory systems. The result is a substantial
increase in performance of about 8 times compared
with the linear calculations.

5. Choose parameters of alternating-gradient focus-
ing and weak focusing.

6. Observe the transformation of the beam shape
when it moves in the waveguide in the process of
calculating (Fig. 2).

7. Display the field distribution in the space inside
and outside the beam, and construct a vector dia-
gram fields (Fig. 2).

8. Identify the flight range to prevent beam touching
the waveguide wall.

9. Perform optimization of the parameters of the
waveguide and the beam focusing system for max-
imization of flying range and energy extraction
from the beam.

comparison of the software “Dynamics of Particles
DynPart” with its nearest analogue BBU’3000 code
shows a performance gain of 16 [Sheinman and Kir-
ilin, 2014].

4 Analytical Solution for Free Beam
The task of the description of macroparticles move-

ment is self-coordinated: the mutual provision of par-
ticles in ensemble influences on the field created by
particles which, in turn, leads to change of their posi-
tion. We consider an analytical method of the solution
of the integro-differential equation of self-coordinated
dynamics at the following simplifying assumptions:
1. The charge in the bunch is distributed evenly in the

longitudinal direction. Thus f(ζ0) = 1/l , where l is a
length of a bunch.
2. Changing of a relativistic factor over time is negli-

gible γ(t) = γ0.
In considered cases kr i, jr(ζ, t) << 1, in rejecting

field at small deviations of the bunch from an axis the
overwhelming contribution is brought by the 1st az-
imuthal mode i = 1. Nonlinear component of the force
is negligible. Thus, it is possible to consider that the
force acting on charges in the radial direction, depends
on r linearly I1(kr) ≈ kr/2, I1′(kr) ≈ 1/2.

∂2r(ζ,t)
∂t2 −

N∑
j=1

Aj

ζ∫
0

sin (kzj (ζ − ζ0)) r(ζ0, t)dζ0 =

=
Ff

γ0me

(7)
Let us consider a one mode regime and Ff = 0 first.

Then:

∂2r(ζ,t)
∂t2 −A

ζ∫
0

sin (kz (ζ − ζ0)) r(ζ0, t)dζ0 = 0 (8)

with initial conditions r (ζ, 0) = r0, dr(ζ,t)
dt

∣∣∣
t=0

= 0.

We apply Laplace transformation on time to reduce
of the received integro-differential equation to the inte-
grated equation.

r∗(ζ, p)− A
p2

ζ∫
0

sin (kz (ζ − ζ0)) r
∗(ζ0, p)dζ0 = r0

p

(9)
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The received integrated equation has the known solu-
tion obtained on the basis of transformation of Laplace
on longitudinal coordinate.

r∗(ζ, p) = r0
p + r0Akz

p3
√
|kz(kz−A/p2)|

×

×
ζ∫
0

sinh
(√∣∣kz (kz −A

/
p2
)∣∣ (ζ − ζ0)

)
dζ0

(10)

After integration we use the inverse Laplace trans-
form:

r(ζ, t) = r0 +
1

2πi

c+i∞∫
c−i∞

[
r0A

p3(A/p2−kz)
×

×
(
cosh

(√
kz

(
A
/
p2−kz

)
ζ
)
− 1

)
ept

]
dp

(11)

The integrating contour is shown on Fig. 3.
Expressing the image of required function, and find-

ing the original Laplace’s inverse transformation by im-
age decomposition in a Laurent series, we receive for
lack of focusing force Ff = 0:

r(ζ, t) = r0 + vr0t+
∞∑

n=0

[
(kzζ)

2n+2

(2n+2)!

n∑
m=0

[(
n
m

)
×

×
(−1)m

(
t
√

A/kz

)2(n−m+1)

(2n−2m+2)!

(
r0 +

vr0t
2n−2m+3

)]]
.

(12)
Here we have taken into account initial velocity vr0 .

Figure 3. The integrating contour for inverse Fourier transform

If we consider a multi mode excitation the result be-

come more complicated:

r(ζ, t) = r0 + r0
∞∑

n=0

ζ2n+2k2n+2
z

(2n+2)!

n∑
m1=0

[
min (n−m1,
m1+1)∑
m2=0

[
n!(−1)n−m1−m2bm2 (t/τ)2(1+m1−m2)

m1!m2!(n−m1−m2)!(2(1+m1−m2))!

] .
(13)

where τ =

√
n∑

j=1
(Ajk3

zj)

n∑
j=1

(Ajkzj)
,

b =

n−1∑
j=1

n∑
l=j+1

(
AjAlkjkl(k2

l −k2
j)

2
)

(
n∑

j=1
(Ajk3

j)

)2 ,

k2z =

n∑
j=1

(Ajk
3
zj)

n∑
j=1

(Ajkzj)
.

In case the contribution of one of modes is over-
whelming, and the others can be neglected, the solution
(13) coincides with (12).

5 Comparison of the Analytical Expression with
Numerical Modeling

Comparison of the received analytical expression was
carried out with numerical modeling of the bunch
dynamics by the method of macroparticles based on
the DynPart program. Comparative calculations were
made at the following parameters of the waveguide and
the bunch: Rc = 0.5 cm, Rw = 0.634 cm, ε1 = 16,
W = 16 MeV, f = 13.625 GHz, Q = 100 nC,
l = 6σ = 1.2 cm, r0 = 0.01 cm, v0 = 0 m/s.
The DynPart program realizes modeling of uniform

and Gaussian distribution of the bunch charge [3]. The
bunch with the Gaussian profile of charge distribution
exponential suppresses excitement of high modes of the
waveguide that allows its comparison to analytical cal-
culation of dynamics of the homogeneous bunch taking
into account only one main mode. Program was termi-
nated after the bunch had contacted with the vacuum
channel wall.
Results of comparison are presented on Fig. 4, 5.

Figure 4. Charge distribution according to numerical calculation by
macroparticles method
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Figure 5. Charge distribution according to analytical solution

Flight range of the bunch to the contact of the waveg-
uide wall according to analytical solution taking into
account of two modes (Fig. 4) is L = 53 cm.
Flight range has been found using numerical calcula-
tions (Fig. 5) is L = 51 cm.
It means that flight ranges are practically coincided.

It proves a correctness of the assumptions chosen for
analytical model.

6 Beam Dynamics with Focusing
Significant amplitude of own rejecting fields gener-

ated by high current bunches affecting his tail, empha-
size focusing system. To keep the high current beam
is appropriate to use a rigid focusing system based on
FODO focusing [Wangler, 2008; Pavlov, 2008]:

Ff = −k(z)r = −ecr∂B(z)/∂r. (14)

The period of the focusing system radial force can be
approximated by the harmonic dependence for taking
part a potential “sagging” between quadruple lenses:

Ff = −ecrB0 cos (2πz/Ls)/(2Rw). (15)

Denoting g1 = ecB0/(2meγ0Rw) we obtain:

Ff = −g1rmeγ0 cosκ(ζ + vt). (16)

To simplify the beam dynamics equation let us consider
that restoring force is linear increasing with deflection
from waveguide axis without alternating sign compo-
nent: Ff = −g0rmeγ0, where g0 = kg1, k ≈ 1/4.
Solving such integro-differential equation by Laplace
transform method, we receive:

r(ζ, t) = r0 cos
(√
g0t

)
+

+ r0
a2

∞∑
n=1

{
(kzζ)

2n+2

(2n+2)! ×

×
n−1∑
j=0

[
j+1
aj

(n−j−1)∑
m=0

(
n
m

)
(−1)m+jτ2(n−m−j−1)

(2(n−m−j−1))!

]}
+

+r0 cos
(
t
√
g0
) ( cos(λζ)−1

(a+1)2
+ kzζ sin(λζ)

2
√
a(a+1)3/2

)
−

− r0t
√
g0

2(a+1) sin
(
t
√
g0
)
(cos (λζ)− 1) ,

(17)
where τ = t

√
A/kz , a = g0kz/A, λ =

kz
√
(a+ 1)/a.

The received solutions can be used for fast assessment
of flight range of the bunch in the dielectric wakefield
structure, Fig. 6, 7.
Increasing of g0 leads to increasing the flight range.

The most significant increasing the flight range can be
achieved by decreasing the beam offset from waveg-
uide axes. This method increasing the flight range is
limited by technical possibilities of the beam aline-
ment before its inserting to dielectric filled accelerating
structure.

Figure 6. Flying range vs of force value

7 Conclusion
The methods of analytical calculation of self-

coordinated bunch dynamics in wakefield accelerating
structures can be used for development of new opti-
mization tasks of accelerators for physics of high en-
ergy and perspective sources of radiation in THz fre-
quency range.
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Figure 7. Flying range vs of initial offset
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