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Abstract: Earth observation from geostationary orbit requires extremely accurate pointing
knowledge of the instrument. Due to misalignments, thermal distortion effects and uncertainties
on the attitude and position, it is essential to use image information, to meet the stringent
requirements. We developed a high accuracy attitude estimation system, which uses multispec-
tral payload image data. The navigation system evaluates the shift of the image content and
reconstructs the rotational motion of the satellite. The estimation results are filtered and fused
with AOCS data. The geometrical image correction and registration of the satellite images is
performed using the improved knowledge of the line of sight.
The reliability of image navigation depends fundamentally on the correct recognition of
cloud areas in the image data. Clouds can cover the earth’s surface and images can become
incomparable as well as cloud motion can be interpreted as false satellite motion. Thus, a
cloud detection algorithm has been developed, which is based solely on unregistered and non-
calibrated image data. A multispectral analysis (MSA) algorithm has been implemented, which
uses VIS and IR channels for cloud detection during day and night time. The paper presents a
description of cloud detection algorithm, results of sensitivity analysis with respect to ground
texture and lightning conditions and simulation results of the navigation performance under
cloud conditions.

Keywords: Image Navigation, Image Motion Compensation, Optical Flow, Motion Estimation,
Cloud Detection.

1. INTRODUCTION

Geostationary Earth observation weather satellites acquire
multi-spectral images during operational mode using a
line scanner. Satellite rotational and translational motion
during the image acquisition phase cause geometrical
image distortions. Currently this problem is solved by the
principle of landmark tracking using ground control points
(GCP). It uses feature recognition (e.g. edge detection)
of shorelines Liu and Jezek (2004), Madani et al. (2004),
river or roads Boge (2003) or terrestrial landmarks Lim
et al. (2004) and it matches the detected features with
corresponding reference features taken from a database,
see Fig. 1. Significant contributors to the GCP based image
navigation errors are landmark variations over time, image
distortions (blur, lightning), imprecise knowledge of the
landmarks absolute position and cloud coverage. Ground
control points are locally distributed on the Earth surface
and can provide only a limited number of information.

? Developed within a cooperation project between EADS Astrium
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Fig. 1. GCP based Image Correction



Fig. 2. Optical Flow based Image Correction

To overcome these limitations the current paper pro-
poses an alternative attitude estimation approach using
the whole image information of an imaging payload. The
well known egomotion determination via optical flow (also
image flow) processing Janschek et al. (2006), Tchernykh
et al. (2006) is adapted to scan images Zaunick et al.
(2008). This method offers several benefits against land-
mark tracking: it allows a robust and high accuracy deter-
mination of the satellite attitude as well as a geometrical
correction of the payload scan images and it offers several
variants with different level of a priori information, see
Fig. 2.

Cloud coverage and cloud motion certainly disturbs the
visual navigation estimation process. Clouds hide land-
marks and they disturb the matching of image segments.
Cloud motion can be interpreted as a false motion of
image content and so mistaken as false satellite motion. In
Saunders and Kriebel (1988) a series of threshold tests for
AVHRR data (five spectral channels) have been developed.
This algorithm has become a standard scheme for cloud
detection. The use of both visible and IR channels allows a
cloud detection during day and night time. Based on this
standard scheme an improved cloud detection algorithm
has been developed, which incorporates solely unregistered
and non-calibrated image data and a multispectral analy-
sis for discriminating cloudy and clear sky areas.

2. SYSTEM OVERVIEW

The system developed in our work, employs an attitude es-
timation system based on GEO satellite scanning imagery.
The goal of the system is to estimate the 3D orientation of
the camera coordinate frame, with respect to a global ref-
erence frame or relative to elapsed attitude histories. The
system incorporates two types of navigational concepts:
(a) the direct optical flow navigation (DOF), which uses
two consecutively acquired images for navigation purposes
without any complementary information and (b) the vir-
tual optical flow navigation (VOF), which needs some a
priori information. Both proposed image navigation meth-
ods use two images to compute the camera orientation.
The first input image is the currently acquired camera
image, whereas the origin of the second image differs for
the two methods. In both cases the attitude determination
is based on the image flow determination between the

first and the second image. To compute the image flow
a multipoint 2D correlation has been used.

Fig. 3. System Architecture

Fig. 3 illustrates the system architecture. The images
used in the image navigation (either DOF or VOF) are
acquired by the payload (scanning imager) of the satellite.
The current image and parameters (complexity depends
on the method) are used to estimate the state vector of
the camera. The state based on the image navigation is
filtered and fused with the estimated state obtained from
the on-board navigation (AOCS). Primary (e.g. attitude
and angular velocity) and secondary states (e.g. rotations
between coordinate systems and camera parameters) of
the satellite are obtained after filtering. A side effect
is the improvement of the overall state estimate of the
satellite. Thus, the onboard navigation can be supported
and the complexity of the AOCS can be reduced. Based
on the improved satellite state the acquired image is geo-
referenced and geometrically corrected.

3. IMAGE NAVIGATION

The proposed image navigation methods are based on
evaluating the movement of the image content (optical
flow) by using a FFT block matching algorithm. For
one pair of images 1 the optical flow is determined by
subdividing both images into small fragments and 2D
correlation of corresponding fragments. As a result of each
correlation the local shift vector at the specific location
is being determined, a whole set of local shift vectors
forms an optical flow matrix. The reliability of each vector
is determined by evaluating the height of the largest
correlation peak, the relation of the highest to the second
highest peak and by a boundary for the maximum shift
magnitude. The image navigation method works with two
different kinds of reference scans: (a) a previous scanned
image or (b) a virtual image. Both concepts are described
in the following subsections.

3.1 Direct Optical Flow Navigation

This variant does not need any a priori information and
it employs the so called direct optical flow navigation
between the current image and a previous scanned image.
It gives a conclusion about the camera motion which took
place between the acquisition instants.

The camera acquires a sequence of images during opera-
tional mode. Then the optical flow is computed between
1 One pair of images consists of a reference image and a currently
acquired image.



the current acquired image and a previously acquired one.
Each image also serves as input for the cloud detection
algorithm, which determines the visibility of the earth
surface on the image. Thus, the computed optical flow
field and the cloud mask form the inputs to the motion
estimation algorithm. At those areas, where the earth is
visible, the optical flow vectors are used to compute the
rotation between the two images. There is no relation to a
global frame and the two attitudes are independent from
each other and from other frames. Therefore the computed
rotation corresponds to a relative rotation between the two
acquisition instants.

3.2 Virtual Optical Flow Navigation

This variant needs some a priori information: a preferably
high accuracy geo-referenced image, an a priori camera
pose estimate and surface data of the Earth (ellipsoidal
parameters or digital elevation model). Fig. 4 shows the
block diagram of the VOF navigation algorithm. In some
way this method is similar to the DOF navigation, since
one acquired image from the camera is used to compute
the optical flow. But the second image is a synthetic
image derived from an image generation block. Based
on a reference image, the a priori camera pose estimate
(taken from the last instance or the AOCS) and surface
parameters of the earth, a so called virtual image is
generated. This virtual image looks like if it was taken from
the estimated camera pose. The principle of the image
generation works like a ray tracing method. Considering
the camera characteristics for each pixel a virtual line of
sight (LOS) is computed. Based on the estimated pose
of the camera and the geometrical shape of the earth
the intersection points of each LOS with the earth can
be determined. Thus, each pixel of the image plane gets
a corresponding earth coordinate with respect to the
ECEF. The grey value of each pixel is interpolated with
data from the reference image. Observing the earth from
geostationary orbit, the geometrical shape of the earth can
be assumed as ellipsoidal.

The optical flow between the current acquired image and
the generated image is computed using a 2D cross corre-
lation algorithm. Cloud contaminated areas are detected
using the cloud detection algorithm. Based on the image
flow vectors of the visible areas the camera rotation is
estimated. Since the computed rotation took place be-
tween the virtual and the current image, the result gives
a conclusion about the difference between the estimated
and the real camera orientation. Thus, the a priori camera
orientation estimate is corrected based on the computed
difference. The corrected camera pose can be used again to
generate a new virtual image and the accuracy can be in-
creased iteratively. In most cases, the algorithm converges
after two or three iterations and the accuracy reaches
a constant value. The yaw angle determination is very
sensitive and also influences the other angles. Therefore
the precision of the initial values directly drives the overall
accuracy. Thus, importing the yaw angle from the AOCS
and leaving it unchanged tends to make the algorithm
more robust.

Although assuming the earth ellipsoidal, the computa-
tional effort to generate the virtual images is rather huge in

Fig. 4. Principle of Virtual Optical Flow Navigation (VOF)

comparison to DOF navigation where no image generation
is required. Therefore the VOF method can not be used as
real time application, unless preprocessed virtual images
which are saved in a database or special image processing
hardware, e.g. GPUs, is used for efficient computation.

4. ROTATION ESTIMATION

The computed optical flow gives a conclusion about the
camera motion which took place between the acquisition
instants of two images. Since the origin of the two images
has no influence on the method how to compute the
motion, the egomotion estimation described below is valid
for DOF navigation as well as for VOF navigation. The
rotation estimation is based on the well known egomotion
equation

dx =
1
z
A(x) · ds + B(x) · dΦ (1)

where dx denotes the image shift on the image plane, z
is the z-component of the world point w.r.t. the camera
frame, ds is the infinitesimal translational motion and dΦ
denotes the infinitesimal rotational motion of the camera.

Since translational motion of the camera with respect to
the ECEF (earth centered and earth fixed) frame is small
and the distance to the scene points is very large, the effect
of translational image flow can be neglected for the current
application. Thus, (1) reduces to

dx = B(x) · dΦ (2)
Equation (2) represents a linar system of equations, which
characterises the projection of the camera rotation onto
the image plane. If sufficient many image shift vectors dx
are available, the camera rotation dΦ can be computed
by solving (2). The computed rotation gives a conclusion
of the satellite motion between the acquision phases of the
two input images. For more detailles refer to Zaunick et al.
(2008).

5. CLOUD DETECTION

Cloud cover and cloud motion could be misinterpreted
as camera motion by the algorithm and should therefore
be detected before motion estimation. The cloud detec-
tion algorithm must deal with unregistered imagery. The
developed cloud detection algorithm is based on the as-
sumption, that cloudy areas are colder and brighter than
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Fig. 5. Histogram of a cloud free coastal region (VIS8)

clear-sky areas. Thus, the use of multiple channels allows
to discriminate between clouds and clear sky areas during
day and night time. For detailed reading refer to Klink
(2008).

5.1 Multispectral Cloud Detection

Multispectral cloud detection is based on rather simple
threshold tests, i.e. if the value of a pixel in one spectral
channel is greater than a predefined threshold, then the
pixel is regarded as cloud contaminated.

In general two subcategories of threshold tests exist: single
channel tests and inter-channel comparison tests for which
the channel differences are formed:

• IR10.8 . . . cold cloud test
• VIS8 . . . bright cloud test (during day only)
• VIS8 . . . bright cloud test (during day only)
• IR10.8 - IR12.0 . . . high cloud test
• IR8.7 - IR10.8 . . . cirrus cloud test
• IR3.9 - IR12.0 . . . thin cirrus test (during night only)
• IR10.8 - IR3.9 . . . low cloud and fog test

Furthermore it is very probable that the close-by pixels
of a cloud infected pixel are cloudy as well. For these
neighbouring pixels the same threshold test is exclusively
run again but with a slightly lower/higher threshold.

5.2 Dynamic Threshold Determination

A major issue for these tests is to find appropriate thresh-
old values. A common solution to this problem is to deter-
mine the thresholds dynamically from the scene content.
Still, dynamic threshold determination remains difficult
for coastal regions since there are usually large variations
in albedo and surface temperature.

The developed algorithm is based on the assumption
that cloud free images (both VIS and IR) have very
characteristic spectral histograms. An image of a cloud
free coastal region has two significant sharp peaks: a
sea peak (dark, cold water) and a land peak (warmer,
brighter). Fig. 5 and Fig. 6 show a cloud free and cloud
infected landmark and their corresponding histograms.
The algorithm will be further explained by means of a
VIS8 image but it works in the same way for IR imagery.
In case of IR imagery the histograms will look very similar
while the order of peaks is inverted. Clouds are cold and
therefore dark in contrary to their bright appearance in
VIS imagery.
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Fig. 6. Histogram of a cloud infected coastal region (VIS8)
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Fig. 7. Histogram Processing

An adequate threshold must have a higher value than the
land peak and is therefore located at the foot of the land
peak and at the beginning of the cloud trail. In a first step,
the sea and land peaks need to be identified. The original
histogram is smoothed to find unambiguous peaks. It is
most likely that a histogram features three peaks: land,
sea and clouds. Only scenes which are completely cloud
free and have an utter homogeneous land surface or scenes
in which one of the major elements (land or sea) is totally
covered, feature two peaks. Scenes which are completely
cloud covered show a single peak only.

The threshold is located at the base of the second peak
which forms the land peak in the large majority of cases.
The threshold is determined by finding the first maximum
of the second derivative (greatest change in slope) of
the smoothed histogram, see Fig 7. If the histogram
features one distinctive peak only the threshold is found
by multiplying the peak gray level with a static factor.

5.3 Generation of the Final Cloud Mask

Each test described in the previous sections creates a bi-
nary cloud mask. Since some tests tend to mark cloud free
pixels as cloud contaminated or vice versa, a confidence
factor for each test is introduced. The cloud mask of
reliable tests such as the Cold Cloud test is weighted higher
than the cloud mask created by the Spatial Coherence
test. The weighted masks are merged into a single final
cloud mask by calculating their sum. Finally a pixel is



Fig. 8. Result of Cloud Detection during daytime

Fig. 9. Result of Cloud Detection during night

regarded as cloud contaminated if its value exceeds a static
threshold.

6. SIMULATION RESULTS

6.1 Cloud Detection

The verification of the cloud detection scheme was per-
formed manually since no reference cloud masks were
available. The cloud conditions present in the landmark
chips and the result of the cloud detection were inspected
visually and categorized.

Fig. 8 and 9 illustrate two examples of the multispectral
analysis during daytime and during night. The underlayed
image shows the scanned area, the detected cloud mask is
coloured in magenta. These tests have been accomplished
with various image chips. Overall 222 chips have been
inspected. The percentaged proportion of the weather
conditions of the inspected images is depicted in Fig. 10
(left chart). The results of all verification tests (during day
and night) are shown in Fig. 10 (right chart).

It can be summarized that the developed cloud detection
scheme shows good results in more than 60% percent of
the cases independent of the daytime or weather condi-
tions. The algorithm tends to mark unnecessary pixels
at daytime while only detecting a part of the clouds at
night. This is probably due to the Bright Cloud Test
which significantly contributes to the final cloud mask.
The Bright Cloud Test is sensitive in scenes acquired at
twilight or dawn. In general the cloud detection scheme

2%

79%

12%

7%

No clouds

Advantageous weather conditions

Disadvantegeous cloud cover

Undefinable

5%

17%
8%

7%

Useless

Clouds partly detected

Appropriate cloud detection

Unnecessary pixels detected

Undefinable

64%

Fig. 10. Result of Cloud Detection during day and night

shows weaknesses in scenes which feature regions with a
very high albedo, e.g. desert (very bright) and in scenes
in which either land or sea is mostly covered by clouds.
In the latter case clouds are misinterpreted as land area
due to the dynamic threshold determination and therefore
clouds will not be detected completely. It works best with
scenes which feature a histogram with three peaks or
two peaks with a distinctive cloud trail. However, even
if too few or too many pixels have been marked as cloud
contaminated, the remaining visible shoreline should serve
as appropriate enough input data for the following edge
detection and matching process. In just very few cases, 5%,
the cloud detection algorithm returned completely false
classification results.

6.2 Rotation Estimation

The effect of the Cloud Detection on the Image Navigation
has been tested by applying the DOF Navigation. For this
simulation real satellite imagery (MSG 2 ) has been used.
The repeat cycle of the acquisition phases between two
images is 15min. Thus, cloud motion and cloud coverage
are real and not generated. An angular offset of 5 ·10−3rad
is added to all axes to simulate the motion of the satellite.

Fig. 11 through Fig. 13 demonstrate the influence of
cloud motion on the rotation estimation of each axis.
The left charts show the image based attitude estimation
without cloud detection. Cloud contaminated image chips
do not move as they would move due to satellite motion.
This leads to erroneous attitude estimation results. An
unambiguous relationship exists between the optical flow
field and the satellite motion after eliminating of cloud
contaminated shift vectors (right charts Fig. 11 through
Fig. 13). The accuracy of the estimated angles can be
improved significantly. If no valid shift vector remains, the
result is set to zero.

7. SUMMARY

The use of payload image information helps considerably
improving the pointing knowledge of the instrument sig-
nificantly. The more information is available the better
is the performance of the determination of the line of
sight. Therefore we developed a navigation system, which
2 Meteosat 2nd Generation.
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Fig. 11. Effect of Cloud Detection on Image Navigation
results (roll angle), left: estimation without cloud
detection, right: estimation with cloud detection
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Fig. 12. Effect of Cloud Detection on Image Navigation
results (pitch angle), left: estimation without cloud
detection, right: estimation with cloud detection
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Fig. 13. Effect of Cloud Detection on Image Navigation
results (yaw angle), left: estimation without cloud
detection, right: estimation with cloud detection

uses the whole image information. The experiments have
shown, that cloud coverage and cloud motion disturbs the
precise reconstruction of the camera orientation. Reliable
cloud detection during day and night time is essential
to assure permanent high operation performance. The
cloud detection scheme developed in our system is based
on multispectral analysis of VIS and IR channels. Cloud
contaminated image chips are eliminated. The accuracy
and reliability of the system is increased significantly.
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