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Abstract
To efficiently determine critical condition of noise-

induced bifurcation in nonlinear dynamical systems,
a stochastic sensitivity function (SSF) around a deter-
ministic periodic attractor is approximated based on
stroboscopic mapping. In this way, the confidence el-
lipses are constructed to judge critical noise intensity
of noise-induced transition phenomena. To effectively
capture the larger stochastic transient behaviors after
the critical condition, an idea of evolving probabilistic
vector (EPV) is introduced into the Generalized Cell
Mapping method (GCM) in order to enhance the com-
putation efficiency of the numerical method. The fea-
sibility of the two proposed methods is demonstrated
through the study of a pendulum system under external
periodic excitation and additive noise.
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1 Introduction
Noise is ubiquitous in nature and engineering sys-

tems that are all inherently nonlinear. Uncertain distur-
bances or noises on nonlinear dynamical systems often
evoke some unexpected and even coherent responses.
Various noise-induced behaviors have been found,
such as noise-induced chaos [Zhang, Tabata, Tsuchiya,
2011; Tel and Lai, 2010],stochastic bifurcation [Malick
and Marcq, 2003; Xu, He, Fang, 2003],noise-induced
intermittency [Kraut and Feudel, 2003], noise-induced
hopping [Arecchi, Badii and Politi, 1985; Kraut and

Feudel, 2002] and so on.

In [Thompson, Stewart, and Udea, 1994], the bifurca-
tions of deterministic (dissipative) nonlinear dynamical
systems are classified into three categories: safe, explo-
sive and dangerous. The explosive bifurcations are de-
fined as catastrophic global bifurcations with an abrupt
enlargement of the attracting set but with no jump to
remote disconnected attractor. The dangerous bifurca-
tions are catastrophic bifurcations with blue-sky disap-
pearance of the attractor with a sudden fast jump to
a distant unrelated attractor. Undoubtedly, these two
kinds of bifurcations have very important engineering
meaning since they imply that abrupt and great change
in the operation state of a machine or a system takes
place with a continuous variation of a parameter that
may even induce possible damage or destruction of
the system. Since uncertain disturbance is usually un-
avoidable in real engineering environment, it is thus of
great interest to exploit the quantitative prediction on
responses of periodic attractors under noise excitation,
and how to capture the transient responses of the noise-
induced large transition when such bifurcation occurs.
They are the two purposes of the present paper.

It is well known that Monte-Carlo simulation (MCS)
is a direct method to obtain the probabilistic distri-
bution of a stochastic system, but it is too expen-
sive in computations to be used for a systematic in-
vestigation. For the case of excitation under Gaus-
sian white noise, the probabilistic description of the
stochastic responses is governed by Fokker-Planck-
Kolmogorov (FPK). Several approximate methods on
solving FPK equation have been developed, including
Finite Element Method [Spencer and Bergman, 1993],
exponential-polynomial closure method [Zhu, 2012],
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stochastic averaging procedure [Gu and Zhu, 2014],
path integral method [Wehner and Wolfer, 1983; Di
Paola and Santoro, 2009], etc.
Based on the quasi-potential theory, the stochastic

sensitivity function, proposed by Bashkirtseva, can
give an approximate analytical description of the prob-
abilistic distribution. This method is easier than other
FPK equation-based methods and has successfully ap-
plied to analysis the sensitivity of stationary point, 2D
cycle, 3D cycle in differential dynamical systems. For
discrete systems, the sensitivity of fixed point and peri-
odic solution can also be analyzed using SSF [Bashkirt-
seva, Ryashko, and Tsvetkov, 2010]. Moreover, SSF
can help to stabilize the equilibrium in noise disturbed
chaotic system [Bashkirtseva, Chen, and Ryashko,
2012]. In this paper, a non-autonomous dynamical sys-
tem is discretized into a discrete map by 1/N-period
stroboscopic map. Through solving stochastic sensitiv-
ity functions of periodic attractors in maps, confidence
ellipses were constructed to describe the distributions
of the random attractors. In this way, boundary value
problems of matrix differential equations were avoided,
while there were and only matrix algebra equations
need to be solved. Thus, probabilistic distribution of
periodic attractors can be analytically predicted when
the explosive bifurcation occurs.
Generalized Cell Mapping method, which was pio-

neered by Hsu [Xsu, 1981; Xsu, 1987] in 1980s, may
effectively deal with the global analysis of stochas-
tic dynamic systems [Sun and Hsu, 1988] and capture
noise-induced probability evolution for a invariant sets
to another, especially for the dangerous bifurcations.
But, like many other numerical methods for stochastic
dynamics, the computational efficiency is still a cru-
cial problem faced by GCM that needs to be solved
with effort. In the study, we are interest in the prob-
ability distribution of the initial states localizes near a
given deterministic attracting set. Thus, the traditional
GCM that always deals with a priori defined sufficient
large chosen region in the state space is not quite effi-
cient for the analysis of the above problem. Therefore,
the idea of evolving probabilistic vector (EPV) is intro-
duced in this paper in order to enhance the efficiency
of the GCM. By using EPV, only the one-step transi-
tion probability of the cells in the chosen region, whose
probabilities are within a given fiducial probability, will
be calculated, instead of all the cells within the chosen
region in the state space. In this way, the dimension
of the probabilistic vector in the present GCM method
(GCM with EPV), which varies with the evolution of
the stochastic response, is greatly reduced and usually
much smaller than that of the corresponding fix-sized
probabilistic vector. This paper is organized as fol-
lows: In Section 2, the algorithm to obtain SSF of pe-
riodic attractors in non-autonomous nonlinear system
is proposed by constructing 1/N-period stroboscopic
map. Section 3, the idea of evolving probabilistic vec-
tor is proposed in order to enhance the efficiency of the
GCM, and the corresponding algorithm is devised. In

Section 4, the proposed methods are applied to a pen-
dulum system under external periodic excitation and
additive noise. Finally, conclusions are drawn in Sec-
tion 5.

2 Stochastic Sensitivity Function of Periodic At-
tractors

Consider a continuous non-autonomous dynamical
system

ẋ = f(x, t) (1)

where x is n-dimensional non-autonomous vector field
depending on both state x and time t.
When there is a periodic attractor with period T in

non-autonomous system (Eq. 1), a stroboscopic map
at discrete times t = t0 + k∆t (k is positive integer) is
often used to investigate the character of the attractor,
which can be defined as

xk+1 = φ∆t(xk) (2)

However, though the algorithm to get SSF of fixed
point of maps is raised in [Bashkirtseva, Chen, and
Ryashko, 2012], for most of the nonlinear dynami-
cal systems, the explicit expression of 1-period stro-
boscopic map cannot be obtained.
Note that, if ∆t → 0, the linear approximation of map

Eq. 2 can be taken in the interval [t0 + k∆t, t0 + (k +
1)∆t]

xk+1 = exp(Jk∆t)xk (3)

where Jk = ∂f
∂x |x=xk,t=t0+k∆t is Jacobian matrix at

point xk and time t0 + k∆t.
So, the sampling time interval ∆t of stroboscopic map

can be set to

∆t = T/N, N ≫ 1 (4)

and a new stroboscopic map can be written in the form
Eq. 3. This new map is named as a 1/N-period strobo-
scopic map.
Through this new map, the original periodic at-

tractor Γ is discretized into a period-N cycle
Γ∗ = {x1, ..., xN} by N stroboscopic sections
{Σ1, ...,ΣN}.(see Fig. 1)
Now consider system Eq. 1 subject to stochastic dis-

turbance

ẋ = f(x, t) + εσ(x)ξ(t) (5)

where ξ is n-dimensional Gaussian white noise,σ is n
× n matrix which defines the relation between the noise
and the system state, ε is the noise intensity.
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Figure 1. 1/N-period stroboscopic map of a 2-dimensional non-
autonomous system.

The 1/N-period stroboscopic map of system is written
as

xk+1 = exp(Jk∆t)xk + εσ(xk)∆w (6)

where
∆w =

√
∆tξ

is an increment of Wiener process during time interval
[t0 + k∆t, t0 + (k + 1)∆t].
According to [Bashkirtseva, Ryashko, and Tsvetkov,

2010], if the deterministic period-N cycle in Eq. 3 is
exponentially stable in its neighborhood, one can define

Sk = σ(xk),Qk = SkST
k ,Fk = exp(Jk∆t)

k = 1, ..., N
B = FNFN−1...F2F1

Q = QN + FNQN−1FT
N + FNFN−1QN−1FT

N−1FT
N

+...+ FN ...F2Q1FT
2 ...F

T
N


(7)

If the period-N cycle is attractor, it is always exponen-
tially stable. The SSF of point x1 is then the unique
solution of matrix equation

W1 = BW1BT + Q (8)

and W2,W3, ...,WN can then be calculated by the re-
currence relation blow

Wk+1 = FkWkFT
k + Qk, k = 1, ..., N − 1 (9)

After Wk is calculated, a confidence ellipse that rep-
resents the spatial distribution of stochastic states con-
centrated near point xk in stroboscopic section Σk can

be obtained using the following equation:

(x − xk)T W−1
k (x − xk) = 2ε2∆t(− ln(1− P )) (10)

where P ≈ 1 is the fiducial probability, with which the
points in the stochastic attractor are contained in the
ellipse.

3 GCM with Evolving Probabilistic Vector
In this part, GCM with evolving probabilistic vector

will be developed to capture large stochastic transition
of a nonlinear system under noise.
The response of a N-dimensional nonlinear system

subjected to additive and/or multiplicative Gaussian
white noise excitations is well known to be a diffusion
Markov process. Based on the Generalized Cell Map-
ping method, the probability evolution of the stochastic
system is described by a homogeneous Markov chain in
the cell space as

P · p(n) = p(n+ 1) (11)

where p(n) denotes the probabilistic vector describing
the probability of each cell at nth step, and P the one-
step transition probability matrix of the stochastic sys-
tem. The element Pij and pi(n) can be determined by
following formulae

Pij =
∫
Ci

p(x, t|xj , t0)dx =
∫
Ci

p(x, τ |xj , t0)dx
pi(n) =

∫
Ci

p(x, nτ)dx

}
(12)

where τ = t−t0 denotes a mapping time step; Ci is the
domain occupied by ith cell in RN , and p(x, τ |xj , t0)
and p(x, nτ) represent the one-step transition probabil-
ity and the probability under n-steps mapping in RN ,
respectively.
A Gauss-Legendre quadrature is applicable to esti-

mate the above integral in domain Ci. This means that
probabilities in ith cell are discretely expressed by that
at Gauss quadrature points in the cell. Therefore, based
on this rule

Pij =
∑Si

k=1 Akp(xk, τ |xj , t0),
pi(n) =

∑Si

k=1 Akp(xk, nτ)

}
(13)

where xj is the geometrical center of jth cell; xk is the
kth Gauss quadrature point, Si is the number of Gauss
quadrature points in ith cell, and Ak is the quadrature
factor.
To release the difficulty of huge time-consumption in

solving nonlinear stochastic equations based on sam-
pling methods, like straightforward MCS to estimate
the one-step transition probability matrix Pij , a short-
time Gaussian approximation approach proposed in
[Sun and Hsu, 1990] is adopted. The distribution can
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be approximately specified by the mean and the vari-
ance. can be evaluated by integrating moment equa-
tions from t=0 to t=τ .
Borrowing the idea from Point Mapping under Cell

Reference method [Jiang, 2011; Jiang, 2012], the cells
in the chosen region will be classified into active cells
and inactive cells. An active cell represents the cell
whose probability density function (PDF) is within the
prescribed fiducial probability, and an inactive cell is
the cell whose PDF is outside the prescribed fiducial
probability, as shown in Fig. 2. In simulation, the in-
active cells can be neglected in the computation of the
short-time mapping, that is, Pirpr=0 when rth cell is
an inactive cell.

Figure 2. Schematic representations of fiducial probability and ac-
tive cell, inactive cell, sink cell.

So the probabilistic vector p(n) in the present work is
no longer a vector with a fixed length N as in the tra-
ditional GCM, rather its length will vary and equal the
number of active cells. Then the evolving probabilistic
vector is governed by

{
Pijpj(n) = 0 j = r

Pijpj(n) = pi(n+ 1) j ̸=r
j = 1, 2, 3, ..., N

(14)

4 Stochastic Responses in Noise-nduced Duffing
Oscillator

To demonstrate the capability of above proposed
methods, a pendulum system under external periodic
excitation and additive noise

θ̈ + cθ̇ + sin(θ) = Bcos(t) + σww(t) (15)

where w(t) a Gaussian white noise stochastic process
as defined as

E[w(t)] = 0
E[w(t)w(t+ τ)] = δ(τ)

}
(16)

where σw is the noise intensity. Let us fix the pa-
rameters c=0.2 and B=2.0. For the deterministic case,
namely σw=0, two period-1 attractors coexist, corre-
sponding respectively to the clockwise (θ−) and coun-
terclockwise (θ+) periodic rotation of the variable θ1.
Two chaotic saddles are included in each basin of at-
traction, and a chaotic saddle on boundaries of basins
of attraction is detected and shown in Fig. 3.

Figure 3. Global dynamical structure of pendulum system when
c=0.2, B=2.0, σw=0.0, +represents attractor of θ+ and *stands for
attractor of θ-. The chaotic saddle in the basin of θ+ is marked by
blue and in the basin of θ- by green. The chaotic saddle on basin
boundaries is depicted in black. The red curves stands for confidence
ellipses with critical noise intensities.

4.1 Sensitivity Analysis
It is not hard to imagine that the stochastic responses

will respectively concentrate, depending upon initial
condition, around the deterministic attractors when the
noise intensity is sufficient small. The method pro-
posed in Section 2 is employed to investigate the con-
fidence ellipse of the two attractors. Let N=300, ∆t =
T/N = 0.02π and the fiducial probability P=99%. By
increasing the noise intensity, the size of confidence
ellipses increases. When σw=0.077 the ellipses begin
to touch the chaotic saddle in the basin of (θ+), while
σw=0.089 for the clockwise (θ-) periodic rotation (see
Fig. 3). To check our prediction, let us first take noise
intensity σw=0.03, and MCS are used to show its valid-
ity. The confidence ellipse is found to be in very good
agreement with MCS results (see Fig. 4).
However, when noise intensities are up to the critical,

say to σw=0.077 for the case of initial counterclock-
wise rotation (Fig. 5a) or σw=0.089 for the case of ini-
tial clockwise rotation (Fig. 5b), noise-induced bifur-
cation occurs that most of response realizations are still
concentrated around the initial attractor, but a portion
of the response realizations go around the another attra-
cor. Now, the quantification of the probabilistic distri-
bution of noise-induced bifurcation can not be well pre-
dicted by the stochastic sensitivity function technique.
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Figure 4. The confidence ellipses predicted by SSF when noise in-
tensityσw=0.03: red dots is for the initial counterclockwise rotation;
blue dots for the initial clockwise rotation.

Figure 5. The confidence ellipses predicted by SSF: (a) noise in-
tensity σw=0.077 for the initial counterclockwise rotation; (b) noise
intensity σw=0.089 for the initial clockwise rotation.

4.2 Noise-induced Transition

Recalling the stochastic equation defined in 15, Let
mpq = E[θpθ̇q], a set of moment evolution equations
are derived by applying Gaussian closure to using the

short-time Gaussian approximation approach

ṁ10 = m01

ṁ01 = −cm01 − E[sin(θ1)] +Bcos(t)
ṁ20 = 2m11

ṁ11 = m02 − cm11 − E[sin(θ1) · θ1]+
Bcos(t) ·m10

ṁ02 = −cm02 − E[sin(θ1) · θ2]+
Bcos(t) ·m02 + σ2

w


(17)

It should be noted that several expected values in these
equations cannot be analytically expressed by lower or-
der moments. Thus, these non-analytically closeable
functions in Eq. 17 are approximated by second-order
Taylor expansions about the cell centers [Sun and Hsu,
1990].
In this part, we are interested in noise-induced tran-

sition responses. By using the proposed GCM with
EPV, the chosen domain of x and ẋ is taken to be [1.5,
4.2]×[-3.0, 6.0], and covered by 500×500 cells with
0.0054×0.018 resolution on the chose region. In the
subsequent discussion, we will only discuss the case
that the initial conditions is clockwise rotation that lo-
cate on the basin of (θ-) and the chaotic saddle in
the basin, similar phenomena can be predicted for the
counterclockwise case.
Fig. 6 shows that response PDF corresponding to

noise-induced transition is more accurately illustrated
contrasting with Fig. 5b.

Figure 6. The stable-state PDFs predicted by GCM-EPV when
noise intensity σw=0.089 from initial PDF around (-0.479453,-
0.609005).

It is interesting to note that when σw=0.05, the prob-
ability transition induced by noisy have not occurred
in the parameters, namely no qualitative change takes
place on the stochastic responses around two attrac-
tors. But, It is found from the Fig. 7 that a portion
of response realizations evolve from the initial condi-
tion at point (-1.91498174,-0.21192607) that locate on
the chaotic saddle in the basin of (θ-) to the remote dis-
connected attractor (θ+). Finally, the stable-state PDF
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is distributed around these two attractors. It can be ex-
plain that as the increase of noise intensity, among the
two chaotic saddles in different basins of attractor and
a chaotic saddle on boundaries of basins of attraction
start to enlarge, and when σw=0.05 they collide and
merge into a new chaotic saddle on the boundaries cov-
ering the places of the original three chaotic saddles.
Then, the global characteristic of the stochastic pendu-
lum system have been transformed into a new struc-
ture, that is two attractors and a chaotic saddles on the
boundaries of basin of attraction.

Figure 7. The transient PDFs predicted by GCM-EPV when
noise intensity σw=0.05 from initial PDF around (-1.91498174,-
0.21192607): (a) at t=6T; (b) at t=10T; (c) at t=100T.

When the noise intensity is increased, say to σw=0.16,
the stable-state PDF of the stochastic response will fill
into a region covering both the two attractors gradually
to form a stochastic new attractor as shown by Fig. 8.
The stochastic responses increases the response region

abruptly through the connection of the two attractors
and the chaotic saddle on the boundaries of basin of at-
traction, which is defined as a noise-induced explosive
bifurcation [Thompson, Stewart, and Udea, 1994].

Figure 8. The stable-state PDFs predicted by GCM-EPV when
noise intensity σw=0.16 from initial PDF around (-0.479453,-
0.609005).

5 Conclusions
To efficiently capture critical condition of periodic at-

tractors in noise-induced nonlinear dynamical systems,
the sensitivity of the periodic attractors is analyzed by
discretize the non-autonomous system into a discrete
1/N-period stroboscopic map. In order to obtain the
critical noise intensity of noise-induced transition phe-
nomena, SSF is used to judge if the corresponding con-
fidence ellipse is in touch with certain saddle-typed in-
variant sets. In this way, boundary value problems of
matrix differential equations were avoided by solving
only matrix algebra equations. SSF can give an approx-
imate analytical description of the distribution, while
its implementation is easy. The effectiveness of this
method is verified by comparing the confidence ellipses
with the stochastic attractors through the Monte Carlo
simulation. To validity investigate the lager stochas-
tic transition and bifurcation of nonlinear dynamical
systems after the critical condition, an idea of evolv-
ing probabilistic vector is introduced into the Gener-
alized Cell Mapping method to enhance the compu-
tation efficiency of the numerical method. By using
EPV, both computation consumption and memory stor-
age are much more reduced to make the method even
more suitable for detection of large stochastic transi-
tion in stochastic systems. Final, a pendulum system
under external periodic excitation and additive noise is
studied as an example of application.
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