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Abstract
This paper deals with estimation of coefficients of vis-

cous friction for a model of an acrobot. The acrobot
represents an underactuated nonlinear dynamic system,
where typically not all states are measurable. Moreover
effect of noise corruption on remaining measured states
is often non negligible. However, except for friction
coefficient, all remaining parameters of the model can
usually be measured directly.
To overcome mentioned difficulties and to take advan-

tage of abundant prior knowledge, we applied hybrid
extended Kalman filter to this task. Using Monte Carlo
(MC) simulations we approximated probability density
functions of friction coefficients estimate and showed
that the bias and variance of the estimate can be con-
trolled by properly designed experiment.
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1 Introduction
Research concerned with robotic walking design in

past few decades became very actual topic, mostly
aimed at improvement of robustness and energy con-
sumption of control algorithms. The pursue for energy
efficient walking design lead to use of unstable robot
configurations with underactuated variables. Model of
acrobot serves as a basic concept for such underactu-
ated walking robot design. Although simple in appear-
ance, acrobot represents highly nonlinear underactu-
ated dynamic system and control algorithms designed
for acrobot can be seen as an important step towards
underactuated walking.
Such an approach is applied for example in [Anderle

et. al., 2010] and [Anderle and Čelikovský, 2010b]
where it is showed that using a well designed state feed-
back control algorithm, it is possible to track a cyclic
reference trajectory designed for walking like move-
ment of the acrobot.

To deal with the fact that not all state variable are mea-
surable in [Anderle and Čelikovský, 2010a] a nonlinear
observer of acrobot was proposed.

Bipedal walking robot acrobot can be extended to a
more complicated version including four links joined
by two additional joints and thus robot is in addition
able to perform movement in knees. Each leg can be
modeled by one acrobot.

However mostly the mathematical model considered
assumes that the viscous friction in joints can be ne-
glected and thus parameters of mathematical model of
bipedal robot can be obtained by direct physical mea-
surement. Assumption that viscous friction can be ne-
glected often can not be satisfied and damping effect on
the motion of the robot is often considerable.

To include viscous friction effect in a mathematical
model is more or less straight forward procedure, de-
pending on precision of mathematical modeling, but
the determination of the values of friction coefficients
is not possible by direct measurement and these coeffi-
cient have to be estimated.

The situation is complicated by the fact that not all the
states of the system are known and so in order to esti-
mate the parameters one has to estimate remaining un-
known states as well. The Kalman filter has become the
algorithm of choice for state estimation from noise cor-
rupted data in many practical applications, e.g [Iwasaki
and Kataoka, 1989]. In this article we use hybrid ex-
tended Kalman filter (HEKF) which is an extension of
Kalman filter to nonlinear systems with continuous dy-
namics.

Aim of this article is to investigate whether it is pos-
sible to estimate parameters of viscous friction using
experimental identification and to determine at least
approximately how accurate the resulting estimate of
these unknown parameters will be. To exploit the abun-
dant prior knowledge, deal with the fact that not all
states are measured and also that the noise corruption
of measurement is non negligible we used HEKF.



2 Model of the acrobot
In this article we consider following model of acrobot,

depicted on fig. 1.

Figure 1. The acrobot

Physical quantities that describe model of acrobot are
summed up in tab. 1.

Table 1. Parameters of the acrobot

l1, l2 length of 1st, 2nd link [m]

lc1, lc2 center of gravity of 1st, 2nd link [m]

m1, m2 mass of 1st, 2nd link [kg]

τ applied torque [N.m]

g gravitational acceleration [m.s−2]

µ1, µ2 viscous friction parameters [N.s/m]

Two rigid links are joined by a joint. This joint is actu-
ated by a DC motor. Position of the system is uniquely
defined by two angles q1 and q2, thus the system has
two degrees of freedom, yet there is only one control
input, torque τ generated by DC motor. Therefore ac-
robot represents an underactuated system, with degree
of underactuation equal to one and underactuated an-
gle q1. The state vector x of acrobot is composed from
generalised co-ordinates - angles q1, q2 and generalised
velocities q̇1, q̇2. Measured state variables of our labo-
ratory model are q1, q2 thus

x = (q1, q̇1, q2, q̇2)
T ,

q = (q1, q2)
T , q̇ = (q̇1, q̇2)

T ,

u = (0 , τ)T , y = (q1, q2)
T .

Remaining unmeasured states q̇1 and q̇2 have to be esti-
mated. Directly measurable parameters of acrobot are
l1, l2, m1, m2, g and parameters lc1, lc2 can be com-
puted, unknown parameters are µ1, µ2.

2.1 Equations of motion
To obtain equations of motion (EoM) for acrobot we

use classical Lagrangian approach [Landau and Lif-
shitz, 1976]. If we introduce following substitution

θ1 = m1l
2
c1 +

1
12m1l

2
1 +m2l

2
1,

θ2 = m2l
2
c2 +

1
12m2l

2
2,

θ3 = m2l1lc2,

θ4 = m1lc1 +m2l1,

θ5 = m2lc2,

θ6 = µ1,

θ7 = µ2,

(1)

then resulting equations of motion (EoM) of acrobot in
Lagrange formalism are

D(q)q̈ +C(q, q̇)q̇ +G(q) = u (2)

where matrices

D =

[
θ1 + θ2 + 2θ3 cos (q2); θ2 + θ3 cos (q2)

θ2 + θ3 cos (q2); θ2

]
,

(3)

C =

[
−2θ3 sin (q2)q̇2 + θ6; −θ3 sin (q2)q̇2

θ3 sin (q2)q̇1; θ7

]
, (4)

G =

[
θ4g sin (q1) + θ5g sin (q1 + q2)

θ5g sin (q1 + q2)

]
. (5)

Matrix D contains inertia terms, matrix C contains
centripetal, Coriolis force and viscous friction terms
and matrix G contains gravity terms.

3 Hybrid extended Kalman filter
The Kalman filter is a mathematical tool used for es-

timation of state vector of linear systems in state-space
description from noise corrupted measurements. The
hybrid extended Kalman filter is extension of classical
discrete Kalman filter to nonlinear systems, moreover
HEKF considers system with continuous-time dynam-
ics and discrete-time measurements, for detailed infor-
mation see for example [Simon, 2006].
Acrobot’s equations of motion with discrete measure-

ment of outputs can be represented in the following
form

ẋ(t) = f(x,u,w, t)

yk = hk(xk,vk)

= [x1,k, x3,k]
T + [v1,k, v2,k]

T

w(t) ∼ (0,Q)

vk ∼ (0,Rk)



where f(x,u,w, t) are derived EoM, hk(xk,vk) is
function which describes how is state vector trans-
formed on output, w(t) is continuous-time white
noise1 with covariance Q and vk is discrete-time white
noise with covariance Rk and index k means that quan-
tity is evaluated at discrete time instants tk = kTs and
Ts stands for sampling period. Between the measure-
ments estimation of the state vector is propagated ac-
cording to continuous EoM and the covariance of esti-
mation error is propagated according to (7).

˙̂x = f(x̂,u,w0, t) (6)

Ṗ = AP+PAT + LQLT (7)

where

A =
∂f

∂x

∣∣∣∣
x̂+
k−1

, L =
∂f

∂w

∣∣∣∣
x̂+
k−1

, w0 = 0 .

At each measurement time tk, we update the a prior
state estimate x−k and the a prior covariance matrix es-
timate P−k as derived in [Simon, 2006].

Kk = P−kH
T
k (HkP

−
kH

T
k +MkRkM

T
k )
−1 (8)

x̂+
k = x̂−k +Kk(yk − hk(x̂

−
k ,v0, tk)) (9)

P+
k = (I−KkHk)P

−
k (I−KkHk)

T

+KkMkRkM
T
kK

T
k (10)

where I denotes identity matrix and

Hk =
∂hk
∂x

∣∣∣∣
x̂−
k

, Mk =
∂hk
∂v

∣∣∣∣
x̂−
k

, v0 = 0 .

3.1 Parameter estimation
It is possible to estimate both states and parameters

of acrobot using HEKF. We can consider unknown pa-
rameters of acrobot as state variables and augment the
state vector of acrobot as follows

x′ = (xT , θ6, θ7)
T . (11)

Parameters θ6, θ7 are not time varying thus

ẋ′i = 0, i = 6, 7, (12)

and augmented EoM of acrobot are

ẋ′ =

[
f(x,u,w, t)

0+wθ

]
(13)

yk = hk(x
′
k,vk) (14)

1This notation is only an analogy of notation used for discrete
Kalman filter because continuous white noise doesn’t exist.

where wθ ∼ (0,Qθ) is an artificial white noise. Co-
variance matrix Qθ is used for control of the identifica-
tion algorithm and value we used is Qθ = σ2

θI where
σθ denotes variance of unknown parameters and I de-
notes identity matrix.
Now we can use HEKF to estimate state vector x′ of

augmented dynamic system.

4 Simulation results
The results of the proposed identification procedure

are strongly dependent on the level of the measurement
noise. Although corruption of the measurement by the
measurement noise can be suppressed only by the use
of more precise sensors, there are ways how to affect
the precision of the unknown parameters estimate. De-
pending on the amount of data available we can either
adjust the parameter Qθ or we can change the input
signal u.
To investigate properties of proposed identification

procedure, we carried out 100 Monte Carlo simulations
of HEKF with different realizations of noise vector vk,
the covariance matrix of the measurement noise was
Rk = σ2

vI and we set σ2
v = 0.0025. The covari-

ance matrix of process noise was Q = σ2
wI and we

set σ2
v = 10−8.

Then we determined sample means θ̂6, θ̂7 and sample
variances s62, s72, we computed these values as fol-
lows

θ̂i =
1

n

n∑
l=1

θ̂l

si
2 =

1

n− 1

n∑
l=1

(θ̂l − θi)
2

n =100 i = 1, 2 j = 6, 7.

We repeated this procedure for different amplitude of
the input signal u and different values of the covari-
ance matrix Qθ = σ2

θI where σθ denotes variance of
unknown parameters. Length of one simulation was
120 [s].

4.1 Effect of the input signal on the parameters es-
timation

To evaluate the effect of the input signal on the qual-
ity of the unknown parameters estimate we used pseudo
random binary signal, e.g. on fig. 2, to excite the sys-
tem from it’s natural stable equilibrium. We used dif-
ferent values of amplitude to discover how the estimate
depends on the excitation signal. We set the covariance
matrix Q′ of the process noise w′ of augmented system
as follows

Q′ =

[
Q 0
0 Qθ

]
=

[
σwI 0
0 σθI

]
=

[
10−8I 0
0 10−8I

]
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Figure 2. Pseudo random binary signal

We found out that choice of input signal is a very im-
portant part of the experiment. All state variables of
the system should be sufficiently excited and the higher
level of measurement noise is present the better exci-
tation of the system is required. Example of identifi-
cation process for different values of amplitude of the
input signal are depicted on fig. 3.
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Figure 3. Time behavior of θ̂6, θ̂7 under various amplitude of u

From fig. 3 we can see that convergence of the pa-
rameters estimate is faster when the amplitude of the
input system is larger and slower when the amplitude
is smaller.
Another noticeable fact is that convergence of θ̂7 is

much faster than convergence of θ̂6 explanation to that
fact might be that angle q2 is much better excited, i.e.
it’s value varies much more than value of angle q1.
Probability density function (PDF)

f(θ̂i) =
1√
2πs2i

e
− (θ̂i−θ̂i)

2

2s2
i , i = 1, 2

of estimate θ̂6, θ̂7 for 100 Monte Carlo simulations are
depicted on fig. 4, 5.
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Figure 4. Pdf of θ̂6
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Figure 5. Pdf of θ̂7

From fig. 4, 5 we can deduce that bias and the vari-
ance of the estimates θ̂6, θ̂7 are improving due to better
excitation of the system.

4.2 Effect of Qθ on the parameters estimation
To evaluate the effect of covariance matrix Qθ on the

parameter estimation we again carried out the set of
100 Monte Carlo simulations for different values of
matrix Qθ and observed the results. Example of sin-
gle simulation is depicted on fig. 6.
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Figure 6. Time behavior of θ̂1, θ̂2



From fig. 6 we can see that parameter Qθ works as
parameter that controls the sensitivity of the identifi-
cation algorithm to the measurements. Larger values
of Qθ results in faster convergence as the algorithm
is more sensitive to the information from the measure-
ment, however the noise from the measurement is am-
plified too and setting Qθ too large results in oscillatory
time behaviour of the parameters estimate.
Probability density function

f(θ̂i) =
1√
2πs2i

e
− (θ̂i−θ̂i)

2

2s2
i , i = 1, 2

of estimate θ̂6, θ̂7 for 100 Monte Carlo simulations are
depicted on fig. 4, 5.
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Figure 7. Pdf of θ̂6
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5 Conclusion
In this paper we investigated the possibility to estimate

parameters of viscous friction of one leg of bipedal
robot, modeled by acrobot. The identification proce-
dure was implemented using HEKF to deal with the
noise corruption of the measurement and the fact that
not all the state variables were directly measurable.

Moreover hybrid EKF considers dynamics of the sys-
tem in the natural continuous form.
We found this method applicable provided that some

a prior estimate of the parameters and enough data are
available. We verified that the excitation signal has a
direct influence on the bias, variance and convergence
speed of the unknown parameters estimate. Also we
verified that parameter Qθ works as parameter control-
ling the sensitivity of the identification procedure to the
measurements and also pointed out the possible pitfall
in amplification of the noise when one would choose
Qθ too large.
All in all HEKF represents an identification proce-

dure that is able to identify the unknown parameters
of viscous friction despite aforementioned complica-
tions like noise corruption and estimation of unmea-
sured states.

Acknowledgements
This work was supported by grant No. GAP103/

10/0628 and Visegrad fund and is greatly appreciated.

References
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Anderle, M., Čelikovský, S. (2010b). Sustainable ac-
robot walking based on the swing phase exponen-
tially stable tracking. To appear in The 3rd Annual
Dynamic Systems and Control conference, Boston,
USA.
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