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Abstract
The article discusses the problem of identification of

motion model parameters for UAV with nonstationary
disturbances and fractional errors-in-variables. A total
least squares (TLS)-based identification method for the
solution of generalized instrumental variables of the es-
timator is proposed. The proposed method is compared
with least squares (LS) and extended instrumental vari-
ables (EIV). To increase numerical stability, all identifi-
cation methods are implemented based augmented sys-
tems of equations. The simulation results showed the
advantage of the presented method.
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1 Introduction
In several recent years, there has been a great boom

on many kinds of the unmanned aerial vehicles (UAVs),
especially vertical take-off and landing platforms with
multirotor actuators. A large number of articles have

been devoted to identifying the dynamics models of
UAVs. Linear models in the time domain were con-
sidered in article [Gremillion and Humbert, 2010]. The
Kalman filter for identifying flight dynamics was used
in article [Abas et al., 2011], subspace identification
methods are considered in article [Bergamasco, 2014].
The use of ARX, ARMAX, BJ, ARIMAX models is de-
scribed in articles [Belge, 2020; Khaled and Boumehraz,
2022; Suliman et al., 2023]. Identification of dy-
namics in the frequency domain is described in arti-
cles [Wei et al., 2014; Wei et al., 2017; Huang et al.,
2021; Yang et al., 2021]. A comparison of methods
in the time and frequency domains is made in article
[Wu and Lovera., 2019].Identification algorithms for un-
der unknown-but bounded disturbance are discussed in
the articles [Amelin, 2012; Amelin and Maltsev, 2021;
Ivanov et al., 2023]. The identification of nonlinear
models is considered in article [Avdeev et al., 2021].
A review of various UAV model identification methods
is presented [Elgmili et al., 2019]. Most methods as-
sume that identification occurs under the condition that
the noise is stationary and represents ARMA processes.
However, the measurement noise of the sensors and con-
stantly changing flight conditions require the develop-
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ment of methods that allow identification in more com-
plex conditions. The article proposes an identification of
vertical movement model UAV with nonstationary dis-
turbances and fractional errors-in-variables.

2 Problem Statement and the Theoretical Frame-
work

There are a large number of publications in the litera-
ture that provide equations for the dynamics of a quad-
copter, for example in [Castillo et al., 2005; Janusz and
Szafra´nski, 2013].

Figure 1. A typical model of a quadrotor helicopter.

This article uses a dynamics model derived from the
Euler–Lagrange equations under the following assump-
tions:

A1. The quadcopter design is rigid, symmetrical about
the vertical axis.

A2. The center of mass lies at the origin of the associ-
ated coordinate system.

A3. The bending of the structure can be neglected.

Ixφ̈ = (Iy − Iz) θ̇ψ̇ + Tφ(t)

Iy θ̈ = (Iz − Ix) ψ̇φ̇+ Tθ(t)

Izψ̈ = (Ix − Iy) θ̇φ̇+ Tψ(t)
mẍ = (sin (ψ) sin (φ) + cos (ψ) sin (θ) cos (φ)) f (t)
mÿ = (sin (ψ) sin (θ) cos (φ)− cos (ψ) sin (φ)) f (t)

mz̈ = (cos (θ) cos (φ)) f (t)− g

,

(1)

where
θ, ψ, φ are the Euler angles;
x, y, z is the position of the centre of quadrotor mass
with respect to a fixed reference frame;
Ix, Iy, Iz are inertia moments;
Tθ(t), are torques consist of the difference in the action
of the thrust forces for each pair and the gyroscopic ef-
fect;
m is platform’s mass;

g is Earth’s gravity acceleration,
f (t) is total thrust coming from the rotors.

The total thrust is given as

f (t) = f1 (t) + f2 (t) + f3 (t) + f4 (t) , (2)

where fi (t) , i = 1 . . . 4 are forces applied by rotating
propellers.

These forces depend on the rotation speed of the rotors
and the behavior of the air flow near the quadcopter. This
paper considers the movement of a quadcopter in height
z (t) under the assumption that it is oriented horizontally.
Therefore, the angles θ, φ in (1) are considered zero, and
the yaw angle is not significant. From this we obtain the
following model of isolated vertical motion:

mz̈ (t) = f (t)−mg. (3)

Let us refine model (3), taking into account the inter-
action between the rotating blades and the surrounding
air. This interaction is complex [Janusz and Szafra´nski,
2013; Amelin et al., 2015; Amelin et al., 2019]. Based
on [Janusz and Szafra´nski, 2013], we further suggest
that this interaction in vertical motion can be represented
by a viscous friction model. Then instead of (3) we use
a model of the form

z̈ (t) +Kż (t) = Kω

4∑
i=1

ωi (t)−mg, (4)

where ωi (t), i = 1 . . . 4 are angular speeds of rotation of
propellers, is viscous friction coefficient,Kω is propeller
efficiency coefficient.

Taking into account the assumption that the quadcopter
is flying without tilting, we assume that

ω1 (t) = ω2 (t) = ω3 (t) = ω4 (t) .

Neglecting the dynamics of electric motors, we obtain
the following model of the dynamics of vertical motion:

z̈ (t) +Kż (t) = Kuu (t)− g, (5)

where K,Ku are coefficients of the model;
4∑
i=1

ui (t) is height control signal (sum of voltages ui (t)

applied to the motors).
The values of K, Ku depend on many factors and are

difficult to calculate directly. To find their values, we
use identification based on processing experimental data.
The equation (5) in matrix form is described as

z̈ (t)− g = φ (t) θ, (6)

where
φ (t) =

(
−ż (t) u (t)

)
,

θ =
(
K Ku

)T
.
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3 Error in Equation and Least Squares (LS)
Let us add to equation (6) the error in equation

z̈ (t)− g = φ (t) θ + ς(t). (7)

Equation (7) in discrete time is described as

z̈ (tk)− g = φ (tk) θ + ς(tk). (8)

The least squares estimate of the vector can be found
as [Amelin et al., 2015; Amelin et al., 2019]

θ̂LS =
(
ΦTΦ

)−1
ΦT
(
Z̈ − g

)
, (9)

where

Z̈ =

 Z̈ (t1)− g
...

Z̈ (tN )− g

 , Φ =

φ (t1)
...

φ (tN )

.

The system of linear equations (9) can be solved us-
ing the Cholesky decomposition or using the augmented
system of equations [Björck, 1967]:(

KLSEN Φ
ΦT 0

)(
K−1
LSε
θ

)
=

(
Z̈ − g
0

)
, (10)

whereKLS = σmin√
2

, σmin is minimal singular number of
matrix Φ.

4 Errors-in-Variables and total least squares (TLS)
We will assume that the model of input and output sig-

nals is observed with errors

˜̇z (tk) = ż (tk) + ξ̇ (tk) , ˜̈z (tk) = z̈ (tk) + ξ̈ (tk) ,
ũ (tk) = u (tk) + ξu (tk) .

(11)
For noisy measurement, equation (6) is described as

˜̈z (t)− g = φ̃ (t) θ + ε(t), (12)

where
ε(t) = ξ̈ (t) + φξζ(t)θ,
φξζ(t) = φ̃(t)− φ(t).

Let us make the following assumption about noise:
A4. The noise sequences

{
ξ̈ (tk)

}
,
{
ξ̇ (tk)

}
,{ζ (tk)}

are independent sequences with

E
(
ξ̈ (tk)

)
= 0, E

(
ξ̇ (tk)

)
= 0, E (ζ (tk)) = 0,

E
(
ξ̈2 (tk)

)
= σ2

ξ̈
, E
(
ξ̇2 (tk)

)
= σ2

ξ̇
, E
(
ζ2 (tk)

)
= σ2

ζ .

where E is the expectation operator.
The variance values can be estimated from knowledge

of the error values of the accelerometer and voltmeter,
as well as the errors associated with the discretization of
the model.

Our goal is to estimate just the fractional differential
equation coefficients. We will use generalized total least
squares for this. The solving of generalized total least
squares is reduced to finding the minimum of the objec-
tive function:

min
θ

∥∥∥Φ̃θ − ˜̈Z − g
∥∥∥2
2

σ2
ξ̈
+ θTWθ

, (13)

where

W =

(
σ2
ξ̇

0

0 σ2
ζ

)
,

∥·∥2 is Euclidian norm,
W is the diagonal matrix of noise variances,

σ2
z̈ = 1

N−1

N∑
k=1

(
¯̈z (tk)− ˜̈z

)2
, ¯̈z = 1

N

N∑
k=1

z̈ (tk).

The generalized total least squares problem (13) can be
reduced to the total least squares problem

min
θn

∥∥∥Φ̃nθn − ˜̈Z − g
∥∥∥2
2

1 + ∥θn∥22
, (14)

where
Φ

(1)
n = Φ(1) σÿ

σẏ
,Φ

(2)
n = Φ(2) σÿ

σu
,

θ
(1)
n =

σẏ

σÿ
θ(1), θ

(2)
n =

σu

σÿ
θ(2).

The minimum of objective function (14) can be found
as a solution to the biased normal system of equations
describe as

θ̂n =
(
ΦTnΦn − σ2E

)−1
ΦTn

(
Z̈ − g

)
. (15)

An augmented symmetric system of equations was
used to calculate the total least squares (14) [Ivanov and
Zhdanov, 2021b](

σEN Φn
ΦTn σE2

)(
σ−1εn
θn

)
=

(
Z̈ − g
0

)
, (16)

where σ is minimal singular values of matrices(
Φn, Z̈ − g

)
.

Perform inverse change of variable

θ(1) =
σÿ
σẏ
θ(1)n , θ(2)n =

σÿ
σu
θ(2)n .

5 Fractional Errors-in-Variables and Error in an
Equation With Random Coefficients

A further generalization is a model that combines the
error in the equation and errors in the variables:

z̈ (tk)− g = φ (tk) θ + e(tk), ˜̇z (tk) = ż (tk) + ξ̇ (tk) ,

˜̈z (tk) = ÿ (tk) + ξ̈ (tk) , ũ (tk) = u (tk) + ξu (tk) .
(17)
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The assumption that noise sequences{
ξ̈ (tk)

}
,
{
ξ̇ (tk)

}
are white noise is not always

met. The article [Macias et al., 2022; Macias and
Sierociuk, 2023] shows that the accelerometer error will
be fractional white noise. Let us assume that

˜̇z (tk) = ż (tk)+∆αξ̇ (tk) , ˜̈z (tk) = z̈ (tk)+∆β ξ̈ (tk) .

where

∆αξ̇ (tk) =
i∑

j=0

aj ξ̇ (tk−j),

∆β ξ̈ (tk) =
i∑

j=0

bj ξ̈ (tk−j),

aj =

(
αm
j

)
= (−1)jΓ(αm+1)

Γ(j+1)Γ(αm−j+1) ,

bj =

(
βm
j

)
= (−1)jΓ(βm+1)

Γ(j+1)Γ(βm−j+1) ,

Γ(α) =
∞∫
0

e−ttα−1dt is the Euler’s function.

The error in the equation ς(tk) may have a more com-
plex parameterization such as a moving average, autore-
gression, etc. In general, the error model in the equation
can be described as

e(tk) =
C
(
q−1
)

D (q−1)
ς(tk), (18)

where
C
(
q−1
)
=

nc∑
j=0

cjq
−j , D

(
q−1
)
=

nd∑
j=0

djq
−j ,

q−1ς(tk) = ς(tk−1) is back shift operator,
{ς(tk)} is a white noise sequence.

Another important point is that the noise for the drone
is non-stationary

e(tk) =
C
(
tk, q

−1
)

D (tk, q−1)
ς(tk). (19)

The noise model (19) can describe the following
classes of random processes and not only [Marek, 2005]:
linear ARMA models (18), time dependent ARMA mod-
els (The coeefficients is not random, but it depends on t),
self-exciting threshold moving average models, strongly
subdiagonal bilinear models; ARCH models etc. Thus,
the disturbance model for the drone:

z̈ (tk)− g = φ (tk) θ +
C
(
tk, q

−1
)

D (tk, q−1)
ς(tk),

˜̈z (tk) = z̈ (tk) + ∆β ξ̈ (tk) , ˜̇z (tk) = ż (tk) + ∆αξ̇ (tk) ,

ũ (tk) = u (tk) + ξu (tk) .
(20)

6 Extended Instrumental Variables and General-
ized Instrumental Variables

The use of the generalized total least squares for esti-
mation of vector requires knowledge of the samples of

the residual autocorrelation function. This task is very
difficult to accomplish due to the non-stationary nature
of disturbance (20). An alternative approach is instru-
mental variables [Söderström and Stoica, 1983]. The
basic idea of instrumental variables is to select a vec-
tor that is correlated with the regression vector, but not
correlated with the generalized error:

E
(
ψ (tk)φ

T (tk)
)
= Hψφ, E (ψ (tk) ε (tk)) = 0.

For problem (20), such a choice of instrumental vari-
ables can be described as [Söderström and Mahata.,
2002]

ψ (tk) = (ũ (tk−1) , . . . , ũ (tk−n))
T
. (21)

To increase the accuracy of estimates, the dimension of
the vector of instrumental variables is taken to be greater
than the dimension of the regression vector

dim (ψ (tk)) > dim (φ (tk)) . (22)

Estimates can be found from solving the overdeter-
mined system of equations:

ΨTΦθ = ΨT
(
˜̈Z − g

)
, (23)

where

Ψ =

Ψ(t1)
...

Ψ(tN )

 .

The LS solution of system of equations (20) is most
often used:

θEIV =
((

ΨTΦ
)T

ΨTΦ
)−1(

ΨTΦ
)T

ΨT
(
˜̈Z − g

)
,

(24)
The augmented system equivalent to the normal sys-

tem (24) is described as [Ivanov and Zhdanov, 2021a](
KEIV−LSEn ΨTΦ

ΨΦT 0

)(
K−1
EIV ε
θ

)
=

(
ΨT
(
Z̈ − g

)
0

)
,

(25)

where
KEIV−LS =

σmin(ΨTΦ)√
2

, σmin

(
ΨTΦ

)
is minimal sin-

gular number of matrix ΨTΦ.
A TLS solution to the system of equations (23) is de-

scribed as

θEIV−TLS =
((

ΨTΦ
)T

ΨTΦ− σ2
EIV E

)−1

×

×
(
ΨTΦ

)T
ΨT
(
˜̈Z − g

)
,

(26)

The augmented system equivalent to the normal sys-
tem (26) is described as [Ivanov and Zhdanov, 2021b]
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(
σEIV En ΨTΦ
ΨΦT σEIV E2

)(
ε
θ

)
=

(
ΨT
(
Z̈ − g

)
0

)
, (27)

where σEIV is minimal singular values of matrices(
ΨTΦ,ΨT

(
Z̈ − g

))
.

Using a TLS solution is preferable to an LS solution
on short samples [Ivanov, 2021; Ivanov et al., 2022]. The
use of the instrumental variable with vector (21) can lead
to ill conditionality of the matrix

(
ΨTΦ

)T
ΨTΦ or even

incorrectness if input signal u (tk) it is white noise.
Generalized instrumental variables [Söderström, 2011;

Ivanov et al., 2018] have better numerical stability. Let
the vector of instrumental variables be partially corre-
lated with the regression vector and have the form

ψ (tk) = (ũ (tk) , . . . , ũ (tk−n))
T
, (28)

Estimates of the vector of coefficients can be found
from solving the overdetermined system of equations

(
ΨTΦ− σ2

ζH
)
θ = ΨT

(
˜̈Z − g

)
, (29)

where H =


0 0
0 1
...

...
0 0

 .

Let us introduce the notation

X = ΨTΦ− σ2
ζH,

then the LS solution of system (29) is described as

θGIV =
(
XTX

)−1
XTΨT

(
˜̈Y − g

)
. (30)

The augmented system equivalent to the normal sys-
tem (30) is described as [Björck, 1967](
KGIV−LSEn X

XT 0

)(
K−1
GIV−LSε
θ

)
=

(
ΨT
(
Z̈ − g

)
0

)
,

(31)
where
KGIV−LS = σmin(X)√

2
, σmin (X) is minimal singular

number of matrix X .
A TLS solution to the system of equations (29) can

also be found.

θGIV−TLS =
(
XTX − σ2

GIV E
)−1

XTΨT
(
˜̈Z − g

)
,

(32)
The augmented system equivalent to the normal system
(32) is described as [Ivanov and Zhdanov, 2021b](

σGIV En X
XT σGIV E2

)(
ε
θ

)
=

(
ΨT
(
Z̈ − g

)
0

)
, (33)

where σGIV is minimal singular values of matrix(
X,ΨT

(
Z̈ − g

))
.

7 Simulation Results
Thus, the disturbance model for the drone:

ÿ (tk)− g = φ (tk) θ +

(
tk, q

−1
)

D (tk, q−1)
ς(tk),

˜̈z (tk) = z̈ (tk) + ∆−0.5ξ̈ (tk) ,

˜̇z (tk) = ż (tk) + ∆−0.4ξ̇ (tk) ,

ũ (tk) = u (tk) + ξu (tk) .

(34)

where
θ =

(
0.293 0.021

)T
,

ς (tk) = c1 (tk) e (tk−1) + c2 (tk) e (tk−2) +
sin (0.01tk) + sin (10tk) ,
ξÿ (tk), ξẏ (tk), ξu (tk) are independent random
variables with zero mean and constant variance;
c1 (tk) ∈ N (0, 1), c2 (tk) ∈ N (3, 1) are Gaussian
random variables.

The input signal is described as

u (tk) = 0.7ζu (tk−1) + 0.49ζu (tk−2) + sin
(
0.1t1.1k

)
,

(35)
where
ζu (tk) ∈ N (0, 0.02) is Gaussian random variable.

Figure 2 shows values u (tk), z (tk).

Figure 2. Values u (tk), z (tk).

The results are based on 100 independent Monte Carlo
simulations. Sampling time Td = 0.2s. The number of
data points N in each simulation was 4000.
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Figure 3. Histogram of NRMSE for LS

Test examples were compared by the normalized root-
mean-square error (NRMSE) of parameter estimation,
defined as

δθm =

√√√√√∥∥∥θ̂m − θm

∥∥∥2
∥θm∥2

·1000/0, δθ =

√√√√√∥∥∥θ̂ − θ
∥∥∥2

∥θ∥2
·1000/0.

Example 1: Noise-to-signal ratio are σξu/σu =
σe/σÿ = σξẏ/σẏ = 2 · 10−3, σξÿ/σÿ = 10−2.

For each method, we have given the sample mean and
sample standard deviation denoted by SD.

Table 1. Mean and standard deviation of NRMSE

LS IV GIV

δθ1 6.43± 0.074 187.2± 119.4 2.30± 1.67

δθ2 6.32± 0.075 129.3± 80.4 2.26± 1.65

δθ 6.42± 0.074 186.9± 119.2 2.30± 1.67

Figures 3-5 show histograms of NRMSE.
Example 2: Noise-to-signal ratio are σξu/σu =

σe/σÿ = σξẏ/σẏ = 5 · 10−3,σξÿ/σÿ = 10−2.

Figure 4. Histogram of NRMSE for EIV

Figure 5. Histogram of NRMSE for GIV

Figure 6. Histogram of NRMSE for LS

Figure 7. Histogram of NRMSE for EIV
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Figure 8. Histogram of NRMSE for GIV

For each method, we have given the sample mean and
sample standard deviation denoted by SD.

Table 2. Mean and standard deviation of NRMSE

LS IV GIV

δθ1 6.55± 0.10 211.6± 247.3 5.74± 2.70

δθ2 6.442± 0.10 145.0± 159.7 3.69± 2.65

δθ 6.55± 0.10 211.6± 246.9 5.739± 2.70

Figures 6-8 show histograms of NRMSE.

8 Conclusion
The article proposes to consider the identification of

a quadcopter vertical take-off model under conditions of
non-stationary disturbances and observation interference
in fractal white noise. It is proposed to use TLS to solve
the problem of generalized instrumental variables. To
improve numerical stability, a representation based on
extended equivalent systems is proposed. Simulation re-
sults showed that the proposed approach allows more ac-
curate LS and EIV.

On the other hand, LS has the smallest standard devia-
tion. To further reduce the standard deviation of the es-
timation error, the development of a regularized version
[Ivanov and Zhdanov, 2022] of generalized instrumental
variables is an urgent task.
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