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Abstract— Problems of evolution description are considered
for probability distributions (both unconditional and condi-
tional) of random information sets. These sets named in the
work as multiestimates naturally appear in problems of state
and parameter estimation for statistically uncertain systems.
The special attention is given to cases when multiestimates
depend on a finite number of parameters. With use of theories
of guaranteed and statistical estimation for such cases, the
estimation from below is received for the conditional probability
of inclusion of a multiestimate in the given set or its intersection
with this set. Results are illustrated on examples.

Index Terms— Multiestimates, stochastic inclusions, estima-
tion, filtering.

I. INTRODUCTION

The concept of information set of a controlled system is
successfully used for a long time in the theory of guaranteed
estimation of determinate systems, [1]. For systems with the
mixed uncertainty including both determinate, and random
disturbances, it also were offered estimates in the form of
sets, [2], [3]. However, these estimates were not reduced to
the information sets in the absence of random disturbances.
In this connection, in work [4] the concept of random
information set is introduced for multistage systems with the
mixed uncertainty. The introduced sets are already reduced
to earlier known in the absence of the random disturbances,
but generally demand the further processing, as they depend
on random and not observable parameters. In work [5], a
generalization of the random information sets, named for the
brevity multiestimates, is offered for multistage stochastic
inclusions. Under some natural assumptions on the inclu-
sions, the multiestimate X(t, y, ω) at the instant t represents
a compact set depending in a not anticipatory way from an
element of probability space, formed by stochastic elements,
and from the obtained measurements yt

0. In some sense the
multiestimate can be considered as a random state of the
statistically uncertain system.

Multiestimates submit to certain evolutionary inclusions.
As they are not the equations, but inclusions, we cannot
define precisely the probability distributions of the specified
elements. However it is possible to define the family of their
admissible probability distributions being based on P.Huber’s
technique [6], and to trace its evolution. Having the admis-
sible family of distributions, it is already enough to allocate
simply the conditional distributions when the element yt

0 is
fixed, so, to receive the guaranteed estimations from below
for probabilities of events of a kind {X(t, y, ω) ⊂ A} or
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{X(t, y, ω) ∩ A 6= ∅}, where A is a fixed Borel set. The
stated way encounters rather difficult consideration of distri-
butions in the metric space of compact sets, [7]. Therefore
in the given work, rather simple special cases of inclusions
are considered for which it is possible to reduce the situation
to evolution of finite-dimensional random vectors forming a
Markov sequence.

A. Examples of estimation problems

• Let the point of unit mass move on a straight line under
the influence of white noise. The movement equations:

ẍ = ξ + v, Eξ = 0, cov(ξt, ξs) = qδ(t− s).

The value y is accessible to measurement and submits
to the equation

ẏ = x + η + w, Eη = 0, cov(ηt, ηs) = rδ(t− s).

It is necessary to estimate speed ẋ if the initial state x0

and noises ξ, η are mutually independent. The deter-
minate disturbances v, w have the unknown statistics.
Therefore, a speed estimation problem arises with the
mixed uncertainty.

• Consider a transport ship-airplane system. Suppose
that the base coordinate system (b.c.s.) of the ship
is correct. The axis 1 is directed along the parallel
to the west. The axis 2 is the local vertical. The
axis 3 is directed along the meridian to the north.
The position of the airplane (d.c.s.) with respect to
b.c.s. is estimated by the Krylov (or Euler) angles.
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The sequence of clockwise rotations: θ1, θ3, θ2. Kine-
matic equations are of the form

θ̇1 = ω1 − θ̇2 sin θ3, θ̇2 = (ω2 cos θ1

−ω3 sin θ1)/ cos θ3, θ̇3 = ω2 sin θ1 + ω3 cos θ1,

where ωi are projections of relative angular velocity.
Under small angles (several degrees) these equations is



well linearized:

θ̇1 = Ω1 + ε1 − Ω11 + Ω13θ2 − Ω2θ3,

θ̇2 = Ω2 + ε2 − Ω12 + Ω11θ3 − Ω3θ1,

θ̇3 = Ω3 + ε3 − Ω13 − Ω11θ2 + Ω2θ1.

Here εi is the projections of drifts, for which ε̇i =
vi + ξi, | vi |≤ δi. The values vi are uncertain, and
ξi are random. The projections of absolute angular
velocity Ω1i are connected with indications a1i of the
accelerometers by the relations

Ω̇11 = a13/R, Ω̇13 = −a11/R, a12 = g − v2/R,

v11 = −R Ω13, v12 = 0, v13 = R Ω11, Ω12 = 0,

where v is the module of velocity of center of mass; R
is the radius of the Earth.
The linear approaches of differences of indications of
accelerometers in systems d.c.s. and b.c.s. serve as
measurements:

ẏ1 = a1 − a11 = a12θ3 − a13θ2 + w1 + η1,

ẏ2 = a2 − a12 = −a11θ3 + a13θ1 + w2 + η2,

ẏ3 = a3 − a13 = a11θ2 − a12θ1 + w3 + η3,

| wi |≤ γi,

In the simplest case, the movement occurs on equator
and θ1 = θ2 ≡ 0. Then only one angle θ ≡ θ3 gives a
deviation. We have θ̇ = Ω−Ω1 +ε, ε̇ = v+ξ; Ω ≡ Ω3,
Ω1 ≡ Ω13. For measurement the difference of outputs
of the first accelerometers is used: ẏ = gθ + w + η.

B. Existing approaches

In 1975 I.Ya. Katz and A.B. Kurzhanski suggest a gener-
alization of Kalman-Busy filter for the problem with mixed
uncertainty. Let the inclusions z(·) = {v(·), w(·), x̂0} ∈ Z
with convex compact constraints Z be given. It is necessary
to find an estimate x̂0(t) so that

max
z(·)

E(‖x(t)− x̂0(t)‖2 | yt
0)

= min
x̂(t)

max
z(·)

E(‖x(t)− x̂(t)‖2 | yt
0),

where x̂ is the solution of filter equation with fixed pa-
rameters z(·). The estimate x̂0(t) coincides with Chebyshev
center of attainability set X (t, yt

0) for filter equation. Later
on, I.Ya. Katz have noticed, that if the set Z is symmetric
with respect to z0(·), then ˙̂x0 = Ax̂0 + v0 + PG′R−1(ẏ −
w0−Gx̂0), x̂0(t0) = x̂0

0. In computing aspect it is equivalent
to the Kalman-Busy filter.

Consider a simple example when at once it is more
favorable to search for a linear estimate. Given is the scalar
equations ẋ = v + ξ, ẏ = x + w + η,

∞∫
0

(v2 + w2)dt ≤ 1,

where cov(ξt, ξs) = qδ(t − s), cov(ηt, ηs) = rδ(t − s);
q, r ≥ 0, x0 = 0. From equation ṗ = q − p2/r, p(0) = 0,
we find p =

√
qr tanh (t

√
q/r). The filter:

˙̂x = v + p(t)(ẏ − w − x̂)/r, x̂0 = 0.

If q = 0, then x̂0 ≡ 0, and maximum of mean-square
error equals max

v
| x(t) |2= t, i.e. the error grows linearly

on time. We will search for an estimate of the form: f =
t∫
0

g(τ)ẏdτ + d. Then it is possible to show, that the optimal

estimate satisfies to the equation:

ḟ0 = p(t)(ẏ − f0)/(1 + r), f0(0) = 0,

ṗ = 1 + q − p2/(1 + r), p(0) = 0.

From this it follows that p(t) = tanh (t
√

(1 + q)/(1 + r))
×

√
(1 + q)(1 + r) and under q = 0 the maximum of mean-

square error, equal p(t), is no more than
√

1 + r for ∀t. So,
here the linear filter is more preferable.

Let us mention M.L.Lidov and P.E.Eljasberg’s early works
on linear estimates in problems with the mixed uncertainty.
In A.I.Matasov and V.N.Solovyov’s works, cases when lin-
ear estimates appear optimal among all nonlinear ones are
singled out. Different problems with the mixed uncertainty
were investigated by the following authors: H.V. Poor, D.P.
Loose, J.M. Morris, D.E. Johansen, M. Mintz, I.R. Petersen,
A.V. Savkin, G.A.Timofeeva, I.A.Digajlova, A.R. Pankov,
K.V.Semenikhin, etc.

II. DEFINITION AND PROPERTIES OF MULTIESTIMATES
FOR LINEAR-QUADRATIC SYSTEMS

Consider equations of the form

dx = (Ax + Bv)dt + Cdξ, dy = (Dx + w)dt + dη,

x(0) = x0, y(0) = 0, x ∈ Rn, y ∈ Rm, t ∈ [0, T ].
(II.1)

Here ξ(t), η(t) are independent Wiener processes with
zero means and given covariance matrices for increments,
cov(dξ, dξ) = Idt, cov(dη, dη) = Γdt; v(t), w(t) are
determinate disturbances restricted along with initial vector
x0 by the constraints

‖x0‖2P0
+

∫ T

0

(‖v(t)‖2 + ‖w(t)‖2R) ≤ 1, (II.2)

where the designation ‖x‖2P = x′Px is used for symmetric
and positively defined matrices P , the symbol ′ means the
transposition. Suppose that P0 > 0, R > 0. Then we call an
ellipsoid of the form

X(t, y, ω) = {x : h2(t) + ‖x− x0(t)‖2P (t) ≤ 1}, (II.3)

where parameters are defined from the equations

Ṗ = −PA−A′P − PBB′P + D′RD, P (0) = P0,

dx0 = Ax0dt + Cdξ + P−1D′R(dy − dη −Dx0dt),

x0(0) = 0, ḣ2 = ‖f1(t)‖2R, h2(0) = 0,
(II.4)

a multiestimate X(t, y, ω). Here the updating function f1

serves as the unique solution of the equation∫ t

0

f1(τ)dτ = y(t)− η(t)−
∫ t

0

Dx0(τ)dτ, ∀t ∈ [0, T ].

(II.5)
The following statement is true.



Theorem 2.1: For any signal y in system (II.1), (II.2),
multiestimate (II.3) is nonempty, i.e. X(t, y, ω) 6= ∅, and
the function f1 from (II.5) is determined with condition
h2(T ) ≤ 1. Inversely, for any function f1 ∈ Lm

2 [0, T ] with
condition h2(T ) ≤ 1, the signal y of the form

dy = dη + (Dx0 + f1)dt, y(0) = 0,

dx0 = Ax0dt + Cdξ + P−1D′Rf1dt, x0(0) = 0,
(II.6)

generates nonempty ellipsoid (II.3). The concrete motion x =
x0 + δ, generating signal y, is defined by the equation δ̇ =
(A + BB′P )δ − P−1D′Rf1 with condition ‖δ(T )‖2P (T ) ≤
1− h2(T ), and by the functions v(t) ≡ B′Pδ, w(t) ≡ f1 −
Dδ under condition x0 = δ(0).

From theorem 2.1 it follows that only centers x0 of
the ellipsoids are random and, therefore, distributions of
multiestimates are defined by the finite-dimensional vectors.
From Kalman-Busy theory [11] is known that the conditional
distributions of vector x0(t) will be gaussian, x0 | yt

0 ∼
N(m,Φ), and the parameters m = E(x0 | yt

0), Φ =
cov(x0, x0 | yt

0) of the distribution satisfy the system of
equations:

Φ̇ = AΦ + ΦA′ + CC ′ − ΦD′Γ−1DΦ, Φ(0) = 0,

dm = (Am + P−1D′Rf1)dt + ΦD′Γ−1(dy − f1dt

−Dmdt), m(0) = 0.
(II.7)

Let us fix the received results.
Theorem 2.2: For system (II.1), (II.2), the conditional

distributions of multiestimates (II.3) are uniquely defined by
the family of gaussian distributions for centers x0, which, in
turn, can be found from relations (II.7) under every possible
functions f1 with condition h2(T ) ≤ 1.

A. Estimation from below for conditional probability of
inclusion

Let us write out an estimation from below for conditional
probability of inclusion X(t, y, ω) ⊂ K for a multiestimate
and any convex compact set K. First, the support function
of ellipsoid (II.3) looks like ρ(l | X) = l′x0 + ((1 −
h2)(l′P−1l))1/2. Second, the event {X ⊂ K} is equivalent
to the following {max

‖l‖≤1
{ρ(l | X) −ρ(l | K)} ≤ 0}, where

ρ(l | K) is the support function of the compact set K.
Therefore, with the account of uncertain parameters, we have
the following estimation

min
f1(·)

P ({X(t, y, ω) ⊂ K} | yt
0) = min

f1(·)

∫
Xt

f(m,Φ; x)dx,

(II.8)
where

f(m,Φ; x) = ((2π)ndetΦ)−1/2 exp(−‖x−m‖2Φ−1/2),

Xt = {x ∈ Rn : max
‖l‖≤1

{l′x + ((1− h2)(l′P−1l))1/2

−ρ(l | K)} ≤ 0}.
(II.9)

We note that the event {X∩K 6= ∅} can be expressed via
support functions as {min

x∈K
sup
l,q
{l′x − ρ(l − q | Xt) − ρ(q |

K)} ≤ 0}. For this event, also it is possible to write down
the estimate of type (II.8).

Suppose that in relations (II.8), (II.9), as a set K = Kt,
covering the multiestimate at the instant t from above, the
ellipsoid

Kt = {x : ‖x− k(t)‖2Pt
≤ κ2},

dk = Akdt + ΦD′Γ−1(dy −Dkdt), k(0) = 0,
(II.10)

is chosen, where κ > 1, and centers k(t) are defined by the
equation in (II.10) coinciding with the second equation of
system (II.7) under f1(·) ≡ 0. The ellipsoid Kt is similar
to (II.3). Then estimation (II.8) will not depend on signal
realization yt

0, and we by replacement of variables in integral
(II.8) come to the statement.

Theorem 2.3: Let the set K = Kt, covering the multi-
estimate at the instant t from above, has the form (II.10).
Then the estimation from below of conditional probability
of inclusion X(t, y, ω) ⊂ Kt of the form (II.8) is equal

min
f1(·)

∫
Zt

f(0,Φ; x)dx, (II.11)

where f is the density of gaussian distribution from (II.9),
and Zt is the ellipsoid of the form

Zt = {x : ‖x− z(t)‖2P (t) ≤ (κ − (1− h2(t))1/2)2,

ż = (A− ΦD′Γ−1D)z + (P−1D′R− ΦD′Γ−1)f1,

z(0) = 0.
Owing to theorem 2.3 the estimation from below for

probability of inclusion X(t, y, ω) ⊂ Kt can be counted
up in advance prior to the beginning of estimation process.
The nonlinear problem (II.11) of minimization of terminal
functional on solutions of the determined system of the
equations for z(t) and h2(t) can be solved by standard
methods of optimal control.

B. Example of estimation from below for probability of
inclusion

Consider the distribution of multiestimates for two-di-
mensional system ẋ1 = x2, ẋ2 = v + ξ̇ with discrete
measurements yk = x1(tk−1) + wk +ηk, which are spent
with constant step h = T/N , tk = tk−1+h. Let the uncertain
parameters restricted by the constraint

p0((x1
0)

2 + (x2
0)

2) + q

∫ T

0

v2(t)dt + r
N∑

k=1

w2
k ≤ 1,

where constants p0, q, r > 0. The process ξ(t) repre-
sents gaussian white noise with covariance of increments
cov(dξ, dξ) = α dt. The values ηk are normally distributed,
i.e. ηk ∼ N(0,Γ). We will enter the designations

xk =
[
x1(tk)
x2(tk)

]
, A =

[
1 h
0 1

]
,

vk =
∫ tk

tk−1

[
tk − τ

1

]
v(τ)dτ, ξk =

∫ tk

tk−1

[
tk − τ

1

]
dξ(τ).



If we are interested in the estimation of states at the moments
of measurements’ receipt, the initial system is completely
equivalent to the discrete one:

xt = Axt−1 + ξt + vt, yt = Dxt−1 +wt + ηt, t = 1, . . . , N,

where D =
[
1 0

]
. Here ξt ∼ N(0,Ξ), where Ξ =

α

[
h3/3 h2/2
h2/2 h

]
. The restrictions on uncertain parameters

are equivalent to the following

p0((x1
0)

2 + (x2
0)

2) +
N∑

t=1

(‖vt‖2Q + rw2
t ) ≤ 1,

where Q = 12q

[
h−3 −h−2/2

−h−2/2 h−1/3

]
. As a set K = Kt

covering the multiestimate at the instant t from above, we
choose the ellipse {x : ‖x− kt‖2Pt

≤ κ2}, where κ > 1 and
the centers kt are defined from the equation

kt = Akt−1 + AΦt−1D
′(yt −Dkt−1)/(Γ + DΦt−1D

′),

coinciding with the first equation of the system

mt = AS−1
t D′R ϕt + Amt−1 + AΦt−1D

′(Γ

+DΦt−1D
′)−1(yt − ϕt −Dmt−1);

Φt = AΦt−1A
′ + Ξ

−AΦt−1D
′(Γ + DΦt−1D

′)−1DΦt−1A
′, Φ0 = 0.

under ϕt ≡ 0. As well as in a continuous case, the ellipse
of the form

{x : ‖x− x̂t‖2Pt
+ γt ≤ 1}, (II.12)

will be a multiestimate here, where parameters satisfy to the
equations

x̂t = ξt + Ax̂t−1 + AS−1
t D′R ϕt, x̂0 = 0,

yt = ηt + Dx̂t−1 + ϕt, γt = γt−1 + ‖ϕt‖2Tt
, γ0 = 0;

P−1
t = AS−1

t A′ + BQ−1B′, St = Pt−1 + D′RD,

P0 = P ′
0 > 0, T−1

t = DP−1
t−1D

′ + R−1.
(II.13)

In the equations for elements of conditional distribution
of a vector x̂t there are uncertain parameters ϕt which
are necessary for considering. The ellipse Kt is similar to
(II.12). The signal yt is modeled according to (II.13) under
ϕt = (−1)t0.1924. With a step h = 0.1 and parameters
p0 = q = r = 1/3 the specified choice ϕt provides the
inequality γt ≤ 1 for t = 1, . . . , N , where N = 100. Let
α = 0.1, Γ = 0.02, κ = 1.3. We designate the value of of
probability’s minimum in (II.8) through Pm(t, y). Owing to
the set choice Kt, covering the multiestimate, the function
Pm(t, y) doesn’t depend on a concrete realization of a signal
{y}t. Its change is shown in Fig. 1. To 30-th step the value
of function is stabilized to 0.9111. Covering sets Kt for
t = 5, 10, 15, 20, 25, 30 under some realization of a signal
{y}t are represented in Fig. 2.

Fig. 1

Fig. 2

III. ESTIMATION OF INTERVAL INCLUSIONS

Further on, we write x ≤ y if xi ≤ yi, i = 1, . . . , n;
x, y ∈ Rn. A set [x, y] = {z : xi ≤ zi ≤ yi, i = 1, . . . , n}
is called an n-dimensional interval (in the sequel, simply
interval). Consider interval multistage inclusions of the form

xt ∈ F (xt−1, ξt) ⊂ Rn, yt = {xt−1}m + ηt ∈ Rm,

t = 1, . . . , N,
(III.1)

where F (x, ξ) = [f−(x, ξ), f+(x, ξ)] is the interval, yt is
the measured vector, {x}m is the vector composed from
the first m coordinates of x, m ≤ n. The vector functions
f−, f+ such that f−(x, ξ) ≤ f+(x, ξ) are supposed to be
continuous. The values ξt ∈ Rk, ηt ∈ Rm form independent
white noise sequences with the known probability distribu-
tions. The initial state x0 is a random vector independent of
ξt, ηt.

Let K = [h−, h+] be an interval in Rn. Then we define
the set Π(K, ξ) = [g−, g+], where g−,i = min

x∈K
f−,i(x, ξ),

g+,i = max
x∈K

f+,i(x, ξ), i = 1, . . . , n. By Mn denote the set

of vectors h = (h−, h+) ∈ R2n with property h− ≤ h+. It is
clear that the set Mn is homeomorphic to Cartesian product
Rn × Rn

+. According to definition of the interval Π(K, ξ),



there is a mapping taking each vector h ∈ Mn and each
random element ξ to the vector

g = G(h, ξ) ∈ Mn, (III.2)

where the function G(h, ξ) is continuous owing to the
continuity of the functions f−, f+ in inclusions (III.1). Note
that the obvious inclusion F (K, ξ) ⊂ Π(K, ξ) holds being,
as a rule, strong. Here F (K, ξ) is the image of the set K
under multivalued mapping F .

Define the following multifunctions

I(η, y) = {x : {x}m = y − η},
J(K, ξ, η, y) = Π(K ∩ I(η, y), ξ),

(III.3)

and introduce the recurrent relations
Xt = J(Xt−1, ξt, ηt, yt), yt ∈ {Xt−1}m + ηt,

t = 1, . . . , N,
(III.4)

where X0 = {x0}. If we replace the mapping Π by F in
relation (III.3), then we get the true multiestimate X∗

t (y, ξ, η)
as a result of recalculation. Unfortunately, this set cannot
be described by finite number of parameters. Introduce its
approximation from above by formulas (III.3), (III.4).

Definition 3.1: Any solution of relations (III.4) with some
set of elements {y}t, {ξ}t, {η}t is called the approximating
multiestimate Xt(y, ξ, η) for inclusions (III.1).

The following statement describes some properties of
multiestimates.

Lemma 3.1: The solutions of relations (III.4) and corre-
sponding multiestimates have the following properties.

1) Any pair {Xt, yt} serving as a solution of (III.4)
consists of the nonempty interval Xt and the vector
yt depending on realizations of random elements {ξ}t,
{η}t.

2) The inclusion X∗
t (y, ξ, η) ⊂ Xt(y, ξ, η) holds if the

sets of elements {y}t, {ξ}t, {η}t are realized in system
(III.1).

3) Let the vector h ∈ Mn specify the set Xt−1. Then the
multiestimate Xt is given by vector ht = G(gt, ξt),
where {g−t }m = {g+

t }m = yt − ηt, and g−,i
t = h−,i,

g+,i
t = h+,i if i > m. Here the function G is defined

in (III.2).
4) Due to inclusions in relations (III.4), the random

distributions of elements {Xt, yt} remain uncertain.
The basic advantage of the approximating multiestimates

consists in the fact that they may be described by finite
number of parameters, which can be recalculated due to
the simple recurrent formula. More complicated and exact
approximations can be obtained, for example, with the help
of methods in [8], [9]. However, both the relation of the type
(III.2), and further calculation of admissible distributions
become also more complicated.

Let us formulate the main problems.
Problem 1: Find recurrent relations for unconditional pro-

bability distributions of the sequence {Xt, yt}.
Problem 2: Find conditional distributions of the elements

Xt and recurrent relations for theirs under the given collec-
tion {y}t with the help of the relations of nonlinear filtering.

We can single out separately the parametric case of linear
interval inclusions when instead of (III.1) we have the
equalities

xt = BtAxt−1 + ut + ξt, yt = {xt−1}m + ηt,

t = 1, . . . , N,
(III.5)

where Bt = diag{v1
t , . . . , vn

t }, vt ∈ V , ut ∈ U . Here V , U
are some intervals. Believing that F (x, ξ) = {z : z = BAx
+u + ξ, v ∈ V, u ∈ U}, we can form the sets Xt due to
(III.4). However in given case, one can specify the uncon-
ditional and conditional distributions for the multiestimates
Xt owing to the parametric expression. In particular, one
can consider the problem of building of distributions for
multiestimates with Gaussian random parameters x0, ξt, ηt.

Note that in the case of diagonal matrices A in equations
(III.5), the approximating multiestimates coincide with true
ones, i.e. Xt(y, ξ, η) = X∗

t (y, ξ, η).
Since the second relation in (III.4) is an inclusion, the

probability distribution of the pair {Xt, yt} is not exactly
defined.

A. Unconditional distributions of multiestimates for interval
inclusions

Denote by P(Mn) the set of all probability measures
on Borel σ-algebra B(Mn) of the space Mn. The space
P(Mn) endowed with the weak topology is a Borel space
and, in particular, is metric. Let be given the probability
distribution µ of the element ξ and the distribution ν of
the element η. For simplicity, we consider that the elements
of the sequences ξt, ηt have the same distribution. It is
convenient to regard the space Mn as a Cartesian product
Mm×Mn−m, where the space Mm consists of the vectors
({g−}m, {g+}m representing the first m coordinates of the
components of the vector g = (g−, g+) ∈ Mn. Respectively,
the space Mn−m consists of the last n−m coordinates of the
components of the vector g. Then the projection of the vector
g ∈ Mn onto Mm is denoted by {g}M

m and the projection
of the same vector onto Mn−m is indicated as [g]Mn−m.

The evolution of the multiestimates Xt proceeds as fol-
lows. Let the vector ht−1 correspond the multiestimate at the
stage t− 1 and let Pt−1 ∈ P(Mn) be one of the admissible
probability distributions of this vector. At the stage t, the
unpredictable choice of the vector

q ∈ [{h−t−1}m, {h+
t−1}m] (III.6)

is occurred. Along with the independent realization of the
disturbance ηt, this fact gives the realization of observed
vector yt. After that, the vector gt = (l, [ht−1]Mn−m) ∈ Mn

is allocated, where l = (q, q) ∈ Mm and q = yt − ηt.
At last, along with independent realization ξt, the nonlinear
mapping ht = G(gt, ξt) is fulfilled. One has to admit the
functional dependence q(ht−1) for the vector q of the state at
the previous stage. Let q(ht−1) be a Borel function satisfying
inclusions (III.6). It serves as a functional parameter. Let us
form the function Gq : Mn × Rk × Rm → Mn × Rm by



formula
Gq(h, ξ, η) = (G(g(h), ξ), q(h) + η),

g(h) = (l(h), [h]Mn−m), l(h) = (q(h), q(h)) ∈ Mm.
(III.7)

Doing so the distribution of the pair {ht, yt} at the stage t
can be represented as the Cartesian product of the measures

Zt(B) = (Pt−1 × µ× ν)(G−1
q (B)), B ∈ B(Mn ×Rm),

(III.8)
where Pt−1 is the admissible distribution of multiestimates
at the previous stage, q(·) is the functional parameter.

Generally, formula (III.8) is of interest in connection with
the subsequent construction of conditional distributions of
the multiestimates. If the distributions of the signals are not
necessary, the family Pt of the unconditional distributions
of the multiestimates is constructed similarly to (III.8) by
formula

Pt =
⋃
P

⋃
q(·)

(P × µ)(G−1), P ∈ Pt−1, t ≥ 2. (III.9)

Remark 3.1: In order to simplify the problems, one can
suggest the following parametrization: q(h) = α{h+}m +
(1− α){h−}m, α ∈ [0, 1].

Bearing in mind formulas (III.8), (III.9), we can estimate
from below the probability of the events such as {Xt ⊂ K},
where K = [k−, k+] is some interval. This estimate is of
the form min

P∈Pt

P ({h−t ≥ k−} ∩ {h+
t ≤ k+}).

B. Conditional distributions of multiestimates for interval
inclusions

Let us use the fact that the values yt may be observable.
Due to [10, th. 7.27] there exists a Borel mapping rp(· | y) :
P(Mn ×Rm)×Rm → P(Mn) such that

p(D × C) =
∫

C

rp(D | y)p(Mn × dy) (III.10)

for any sets D ∈ B(Mn), C ∈ B(Rm). The mapping rq(· |
y) from (III.10) is fixed. In the same way as in previous
section, we construct the single measure Z1 ∈ P(Mn×Rm)
at the stage t = 1. Taking into account the measurement
y1, one obtains the conditional distribution R1(y) = {rp(· |
y1)}, p = Z1. Let the family Rt−1(y) ⊂ P(Mn), t ≥ 2, of
conditional measures depending of measurements {y}t−1 be
already constructed. Then at the following stage t we have

Qt(y) =
⋃
q(·)

⋃
{Zt : Pt−1 ∈ Rt−1(y)},

Rt(y) = {rp(· | yt) : p ∈ Qt(y)}.
(III.11)

In formula (III.11), the measures Zt are implied to be formed
due to (III.7), (III.8). The sets Pt(y) from (III.11) are called
the conditional distributions of the multiestimates Xt.

Note that in the special case of single valued right-hand
sides in (III.1), i.e, if the equalities hold, the procedure of
constructing of the sets (III.11) can be reduced to the well-
known procedure of filtering of Markov sequences. In the
determinate case, if the sequence {y}t is realized in the
system, the conditional distribution of Xt(y) is the uniquely
defined information set.

IV. ESTIMATION UNDER COMMUNICATION
CONSTRAINTS

Consider only the case described in Section II. Suppose
that the estimation is performed via a limited capacity
communication channel [12]. In these problems the estimator
only observes the transmitted sequence of finite-valued sym-
bols. Therefore, the value k(t) from (II.10) must be coded
and later decoded. The channel is able to transmit a code
word h at time instants 0,∆, 2∆, . . . where ∆ is a given
constant. Introduce the system in R2n:

˙̃x(1) = Ax̃(1), ˙̃x(2) = (A−KD)x̃(2) + KDx̃(1),

where K = ΦD′Γ−1, on the interval [i∆, (i + 1)∆) with
initial conditions x̃(1)(i∆) = x̃(2)(i∆) = x(i∆), x(0) = 0.

a) Coder: If k(i∆) − x̃(2)(i∆ − 0) ∈ I1
i1

(a) × · · · ×
In
in

(a) ⊂ Ba, then h(i) = (i1, . . . , in). Here Ij
i (a) = {xj :

xj ∈ [−a + 2ai/q,−a + 2a(i + 1)/q)}, i = 0, . . . , q − 1;
Ba = {x : ‖x‖∞ ≤ a}, ‖x‖∞ = maxi|xi|.

b) Decoder: Let X(i1, . . . , in) = (−a + a(2i1 −
1)/q, . . . ,−a+a(2in−1)/q) be the center of the hypercube
I1
i1

(a)×· · ·×In
in

(a). We set x(i∆) = X(h(i))+x̃(2)(i∆−0).
Under some not very hard assumptions one can prove the

following: for every ε > 0 there exist constants a,∆ and
integer q such that k(i∆)− x̃(2)(i∆−0) ∈ Ba and ‖k(i∆)−
x(i∆)‖∞ ≤ ε with probability ≥ 1− ε.
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