
CYBERNETICS AND PHYSICS, VOL. 12, NO. 2, 2023, 121–128

STABILIZING ℓ1- SEMIOPTIMAL FRACTIONAL
CONTROLLER FOR DISCRETE NON-MINIMUM

PHASE SYSTEM UNDER
UNKNOWN-BUT-BOUNDED DISTURBANCE

Dmitriy Ivanov
Department of Information Systems Security,

Samara National Research University
Department of Mechatronics,

Samara State University of Transport
Russia

d.ivanov@samgups.ru

Oleg Granichin, Vikentii Pankov
Laboratory “Control of Complex Systems” IPME RAS

Faculty of Mathematics and Mechanics, Science Educational Center,
“Mathematical Robotics and Artificial Intelligence”

St. Petersburg State University,
St. Petersburg, Russia

o.granichin@spbu.ru, st040308@student.spbu.ru

Olga Granichina
Herzen State Pedagogical University of Russia,

St. Petersburg, Russia
olga granitchina@mail.ru

Article history:
Received 27.07.2023, Accepted 15.09.2023

Abstract
We consider the problem of optimal stabilizing con-

troller synthesis for a discrete non-minimum phase dy-
namic plant described by a linear difference equa-
tion with an additive unknown-but-bounded disturbance.
When considering the ’worst’ case of disturbance, solv-
ing this optimization problem has combinatorial com-
plexity. However, by choosing an appropriate suf-
ficiently high sampling rate, it becomes possible to
achieve an arbitrarily small level of suboptimality using
a noncombinatorial algorithm. In this article, we propose
using fractional delays to achieve a small level of sub-
optimality without significantly increasing the sampling
rate. We approximate fractional delays by minimizing
the ℓ1-norm of the objective function. The proposed ap-
proximation of the fractional delay allows obtaining zero
additional error for many non-integer solutions. Further-
more, it is shown that with a non-zero approximation
error, the resulting controller may have a smaller addi-
tional error than the controller obtained using integer op-
timization. The theoretical results are illustrated by sim-
ulation examples with non-minimum-phase plants of the
second and third orders.
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1 Introduction
The problem of optimal suppression of external dis-

turbances is one of the main problems in control the-
ory. This problem has primarily been addressed in a
stochastic setting, where the solution involves a Linear
Quadratic Gaussian (LQG) controller, similar to a linear
quadratic controller. Another model of external pertur-
bation is harmonic with an unknown frequency, which
can be addressed through H∞-optimization. More re-
cently, researchers have tackled the problem of arbi-
trary limited interference. The problem of optimal sup-
pression of arbitrary bounded perturbations for discrete
one-dimensional minimum-phase systems was clearly
stated in [Yakubovich, 1975] and [Vidyasagar, 1986];
later it was called ℓ1-optimization. Its solution for the
cases of non-minimum-phase systems was obtained in
[Barabanov and Granichin, 1984], [Dahleh and Pearson,
1987]. Further development of the theory and methods
of ℓ1-optimization is given in the books [Dahleh and
Diaz-Bobillo, 1995; Sánchez-Peña and Sznaier, 1998].
ℓ1 regularization has also gained extensive application
in signal processing, particularly in compressive sensing
[Cong et al., 2023; Qaisar et al., 2013], and inverse prob-
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lems, such as those related to geological models [Kha-
ninezhad, 2013; Pankov and Granichin, 2022].

An important advantage of the ℓ1-theory turned out to
be the obtaining of an explicit formula for the quality in-
dex equal to the worst asymptotic error in the class of
perturbations. While the ℓ1-optimization problem can
be solved numerically by solving linear programming
problem, the order of the optimal controller cannot be
estimated in advance. For some examples, the order of
the optimal controller can be very large for even simple
objects. The synthesis of controllers with a given order
for problems with limited noise has been addressed in
[Vidyasagar, 1986; Blanchini and Sznaier, 2000; Polyak
and Halpern, 2001]. However, this approach is far from
optimal. [Granichin, 1990] proposes the optimal syn-
thesis of the controller that results in a controller with
sparsity properties. However, the resulting controller is
infinite-dimensional and includes fractional delay ele-
ments.

In [Chiluka et al., 2021], Virtual Reference Feedback
Tuning is used for robust control of non-minimum phase
systems. In [Tanaka and Koga, 2019], a linear ac-
tive disturbance rejection controller based on the linear
quadratic regulator is introduced. Paper [Nagarsheth and
Sharma, 2020] presents a fractional filter-PID controller
for non-minimum phase systems with dead time.

[Ivanov et al., 2022] presents an approach based on
the fractional delay approximation, proposing the use of
a first-order filter to approximate the fractional delay.
Conditions are obtained to determine cases where the
first-order filter is better than the rounding approxima-
tion. Nevertheless, within the framework of the proposed
approach, the filter for all fractional solutions is subopti-
mal and it is not possible to answer questions about:

1. What is the optimal order of the fractional lag filter?
2. Which of the many approximations is the best for

the ℓ1 controller implementation?

This article presents a new approach to implement
an infinite-dimensional controller. The theorem is for-
mulated that identifies cases where a sparse finite-
dimensional controller can be obtained from an infinite-
dimensional one. This paper’s main contribution con-
sists of the proposed method, which achieves zero ad-
ditional error for many non-integer solutions through a
new approximation of fractional delay. The article shows
that by combining the proposed fractional delay approx-
imation and finite upsampling in the controller, zero ad-
ditional error can be obtained.

The article is organized as follows. Section 2 presents
the problem statement and introduction of fractional de-
lay and fractional delay filters for the implementation of
fractional delay. Section 3 discusses the approximation
errors of the controller. The simulation results are pre-
sented in Section 4. Finally, Section 5 concludes this
paper.

2 Problem Statement and the Theoretical Frame-
work

The results presented in this section are mostly based
on the material stated in [Granichin, 2001].

2.1 Controller for Continuous Non-Minimum
Phase System under Unknown-But-
Bounded Disturbance

Let us consider a continuous-time control plant with
the input–output transfer function

G(s) =
g0(s− λ(1)) . . . (s− λ(m)) . . . (s− λ(n−1))

(s− λ
(1)

) . . . (s− λ
(2)

) . . . (s− λ
(n)

)
(1)

We assume that the excess of the poles (λ) and ze-
ros (λ) of the system is equal to unity, the first m ze-
ros of the transfer function G(s) are unstable (Reλ(i) >
0, i = 1, . . . ,m) and the remaining zeros are stable
(Re(λ(i)) < 0, i = m + 1, . . . , n − 1). Here, Re(λ)
stands for the real part of a complex number λ. Let the
poles λ(1), . . . , λ(n) of the transfer function G(s) not
coincide with the first m unstable zeros.

We choose a discretization step δ > 0 and study a fam-
ily of piecewise constant functions defining the control
actions varying at time instants kδ, k = 0, 1, 2, . . .. By
considering the discretization of the given continuous-
time system in the zero approximation (see [Qiu and
Davison, 1993]), we obtain for a sufficiently small value
of δ a discrete system with the transfer function

Hδ(z) =
hδz(z − λ

(1)
δ ) . . . (z − λ

(m)
δ ) . . . (z − λ

(n−1)
δ )

(z − λδ
(1)

) . . . (z − λδ
(2)

) . . . (z − λδ
(n)

)
(2)

with the poles λδ
(1)
, . . . , λδ

(m)
, . . . , λδ

(n−1)
and zeros

λ
(1)
δ , λ

(2)
δ , . . . , λ

(n)
δ . It is well known that for δ → 0

(see [Qiu and Davison, 1993]), the poles of the transfer
function Hδ(z) are approximately related to the poles of

G(z) by λ
(i)

δ = e−δλ
(i)

, i = 1, . . . , n; for zeros, these
relations are

λ
(i)
δ ≈ e−δλ

(i)

, i = 1, . . . , n− 1.

2.2 Controller for Discrete Non-Minimum
Phase Plant under Unknown-But-
Bounded Disturbance

Let us consider a discrete dynamic control plant de-
scribed by the following equation

a
(
q−1

)
yt = b

(
q−1

)
xt + υt, (3)

where

• yt , xt, υt are the output, input, and disturbance sig-
nals at time instant t respectively;

• q−1 is the backward shift operator: q−1yt = yt−1;
• a

(
q−1

)
and b

(
q−1

)
are polynomials of q−1 ;
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a (λ) = 1 +

na∑
i=1

aiλ
i, b (λ) =

nb∑
i=1

biλ
i.

It is additionally supposed that ∥υ∥∞ = max
t

|υt| ≤
Cυ , Cυ > 0.

A linear stationary stabilizing regulator carries out the
control of a plant with known parameters

α
(
q−1

)
ut = β

(
q−1

)
yt , (4)

where α (λ) and β (λ) are polynomials of q−1:

α (λ) = 1 +

nc∑
i=1

αiλ
i, β (λ) =

kc∑
i=0

βiλ
i.

If the characteristic polynomial of the closed-loop sys-
tem described by Equations (3) and (4)

χ (λ) = α (λ) a (λ)− β (λ) b (λ) (5)

has no unstable roots (in unit disk), then regulator de-
scribed by Equation (4) is stabilizing

sup
t

(|yt|+ |ut|) <∞, (6)

i.e., output yt and control ut are bounded.
Denote by ȳ ∈ l∞ the desired output of the control

plant described by Equation (3). The meaningful formu-
lation of the problem is to build the polynomials α

(
q−1

)
and β

(
q−1

)
, which are guaranteeing Inequality (6)—

stabilizing of output and input—and asymptotic bound

lim
t→∞

|yt − ȳt| ≤ J (α (·) , β (·) , Cv) (7)

with performance index

J (α (·) , β (·) , Cv) = inf
α(·),β(·)

sup
∥υ∥∞≤Cυ

lim
t→∞

|yt − ȳt| .

(8)
Let be ψy/υ (λ) transfer function of closed-loop sys-

tem from disturbance υt to input yt

ψy/υ (λ) =
αy/υ (λ)

χ (λ)
=

∞∑
i=0

ψiλ
i.

So, we have

yt =

∞∑
i=0

ψiυt−i.

The control problem described by Equations (7) and
(8) has an infinite dimension.

Due to the arbitrary nature of the disturbance perfor-
mance index, Equation (8) can be rewritten in the form

J (α (·) , β (·) , Cv) = Cv inf
ψy/υ(·)

∞∑
i=0

|ψi|. (9)

Denote b−(λ) and b+(λ) the unstable and stable part
of polynomial b(λ). So, we have b(λ) = b−(λ)b+(λ).

Assumption 1. a (λ) and b− (λ) are coprime polynomi-
als, and polynomial b− (λ) has s unstable different not
zero and not unit roots λ1, . . . , λs and does not have unit
roots.

In [Barabanov and Granichin, 1984] it was shown un-
der Assumption 1 that optimal regulator characteristic
polynomial χ(λ) is equal to b+(λ) and optimal polyno-
mial α(λ) has following structure: α(λ) = f(λ)b+(λ),
where polynomial f(λ) has not more s non-zero coeffi-
cient (s-sparse structure) and highest possible degree of
f(λ) is bounded and depended on highest of magnitude
on non-stable zeros of polynomial b(λ).

The following theorem from [Granichin, 2001] gives
the answer to the question about the achievable quality
of control. It allows to reformulate the control problem
(7)–(8) as a finite dimension problem.

Theorem 1. Under Assumption 1, the minimum value of
the function Cv∥F (X)∥1 is a lower bound estimate for
minimum value of (8), i.e.

min
X∈Rs

+

Cv∥F (X)∥1 ≤ J (α (·) , β (·) , Cv) (10)

where F (X) = A−1 (X)B ∈ Rs+1, X =

(x1, x2, . . . , xs)
T ∈ Rs+, xi ≥ 1, ∥F∥1 =

s∑
i=0

|fi|,

A (X) =



1 0 . . . 0

1 λx1
1 . . . λ

s∑
j=1

xj

1
...

...
. . .

...

1 λx1
s . . . λ

s∑
j=1

xj

s


,

B =
(
1 1
a(λ1)

. . . 1
a(λs)

)T

. If the minimum of the left
side of Equation 10 is achieved in point Xo with integer-
value components, then the polynomial of the ℓ1-optimal
stabilizing controller can be obtained by the formulas
(see [Granichin, 2001])

α (λ) = f (λ) b+ (λ) , (11)

β (λ) =
(a (λ) f (λ)− 1)

b− (λ)
, (12)

where f (λ) = f0 +
m∑
j=1

fj (Xo)λ
Dj , Dj =

j∑
i=1

xk.



124 CYBERNETICS AND PHYSICS, VOL. 12, NO. 2, 2023

3 Approximation Error of Controller
In [Ivanov et al., 2022] it is shown that the error caused

by the fractional delay approximation does not exceed
the following value

∥∆F∥1 ≤ ∥∆A∥1
∥∥A−1

∥∥
1
∥F∥1. (13)

It follows from the Inequality 13 that for the minimum
error it is required to minimize the ℓ1 norm of the matrix

∥∆A∥1 = max
1≤j≤s+1

∑
∆aij .

The matrix norm depends only on s last rows and
columns, since the error in the remaining columns is
zero.

Let us consider options for approximating fractional
delays to minimize the ℓ1 norm of the matrix ∥∆A∥. Let
us introduce the notation for the integer and fractional
parts powers of the matrix A:

Dj = floor

(
j∑
i=1

xi

)
, dj =

j∑
i=1

xi − Dj , j =

1, · · · , s.
Representing it in the irreducible fraction of an integer

and a fractional part on s last rows and columns

Ã =

λ
D1
1 λd11 . . . λDs

s λdss
...

. . .
...

λD1
s λd1s . . . λDs

s λdss


The family of nonrecursive filters C (λ) minimizing

the norm of a matrix
∥∥∥∆Ã∥∥∥

1

max
1≤j≤s

min
C(λ)

∥∆Ã(C(λ))∥1 = max
1≤j≤s

min
C(λ)

s∑
i=1

|∆ãij(C(λ))|

is defined as

C (λ, j) =

K∑
k=0

ckjλ
k

In the following theorem, we consider which solutions
can be obtained with a filter that completely eliminates
additional error.

Theorem 2. Let a filter family is have the order of the
polynomial K = s− 1, and s > 1, then the norm of the
matrix

∥∥∥∆Ã∥∥∥
1

is zero and coefficients can be found from
solving s systems of equations

K∑
k=0

ckjλ
k
i = λ

dj(s)
i , i = 1, s

If the degree of the family of polynomials is K < s− 1,

then the norm of the matrix
∥∥∥∆Ã∥∥∥

1
̸= 0 is determined

by the formula

max
1≤j≤s

min
ckj

s∑
i=1

λ
Dj(s)
i

∣∣∣∣∣
K∑
k=0

ckjλ
k
i − λ

dj(s)
i

∣∣∣∣∣.
where cj = (c0,j , · · · , cK,j)T , Dj(s) = floor(1 +
j∑
i=1

xi − s), dj(s) = 1 +
j∑
i=1

xi −Dj(s), j = 1, · · · , s.

Proof. The value of the objective function is equal to 0
because the choice of parameters is equivalent to solving
a determined system of linear algebraic equations.

The application of Theorem 2 makes it possible to im-
plement a controller with zero additional error, in con-
trast to the implementation of the controller proposed in
[Ivanov et al., 2022] .

Corollary 1. The combination of the proposed frac-
tional delay approximation and finite upsampling in the
controller provides zero additional error.

Corollary 2. For s = 2, a linear filter will give an error
equal to zero in all smatrix columns. Thus, for s ≤ 2 the
linear filter allows reaching the zero level of additional
error.

Filter coefficients for each column are determined from
the minimum condition

min
c0jc1j

s∑
i=1

λ
Dj

i

∣∣∣c0j + c1jλi − λ
dj
i

∣∣∣. (14)

4 SIMULATION RESULTS
4.1 Example 1 [Ivanov et al., 2022]. Number of un-

stable zeros are s = 2

The class of non-minimum phase plants is described
by the equation

yt − 1.91yt−1 + 5.2yt−2 =

λ1λ2ut−1 − (λ1 + λ2)ut−2 + ut−3 + υt,
(15)

The [Ivanov et al., 2022] article provides figures for
additional error for various values for implementing a
controller using fractional rounding and a fractional de-
lay filter.

It follows from the results of Theorem 1 that the ad-
ditional approximation error in approximating the frac-
tional delay by the objective function (14) is equal to 0.

Table 1 shows the mean and standard deviation of ad-
ditional errors for all λ1, λ2.
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Figure 1. Boxplot of additional errors caused by rounding (round),
fractional lag filter (frac), and approximation 14 (approx)

Table 1. Mean and standard deviation of additional errors

Method
Accuracy characteristics

Mean Std

Rounding 0.0591 0.2050

Fractional filter 0.0468 0.1018

Approximation (14) 0 0

4.2 Example 2. Number of unstable zeros are s = 3

Consider designing a controller using a first-order filter
with non-zero error. The class of non-minimum phase
plants is described by the equation

yi − 1.91yi−1 + 5.2yi−2 = −0.5λ1λ2ui−1+

+(0.5(λ1 + λ2) + λ1λ2)ui−2−
−(0.5 + λ1 + λ2)ui−3 + ui−4 + vi,

(16)

where the corresponding matrices are:

A (X) =

∥∥∥∥∥∥∥∥
1 0 0 0
1 0.5x1 0.5x1+x2 0.5x1+x2+x3

1 λx1
1 λx1+x2

1 λx1+x2+x3
1

1 λx1
2 λx1+x2

2 λx1+x2+x3
2

∥∥∥∥∥∥∥∥ ,

B =


1

1/a(0.5)
1/a(λ1)
1/a(λ2)

 ,

and Cv = 1.
The Global Optimization Toolbox for Matlab was used

to find the minimum of the objective function. The best
solution obtained using the genetic and particle swarm
algorithms was chosen.

Figure 1 shows boxplot representing the distributions
of additional errors for the compared methods. They il-
lustrate that errors caused by using the approximation in
(14) have a lower mean, variance, and maximum values
compared to the rounding and fractional lag methods.

Table 2 shows the mean and standard deviation of ad-
ditional errors for all λ1, λ2.

Table 2. Mean and standard deviation of additional errors

Method
Accuracy characteristics

Mean Std

Rounding 0.2423 1.6610

Fractional filter 0.2342 0.6031

Approximation 0.1339 0.4266

Let us consider one of the plant in more detail. The
non-minimum phase plants is described by the equation

yi − 1.91yi−1 + 5.2yi−2 = 0.3ui−1+

1.375ui−2 − 2.05ui−3 + ui−4 + vi,
(17)

with the following matrices A and B:

A (X) =

∥∥∥∥∥∥∥∥
1 0 0 0
1 0.5x1 0.5x1+x2 0.5x1+x2+x3

1 0.75x1 0.75x1+x2 0.75x1+x2+x3

1 0.8x1 0.8x1+x2 0.8x1+x2+x3

∥∥∥∥∥∥∥∥ ,

B =


1

1/a(0.5)
1/a(0.75)
1/a(0.8)

 .

The minimum of the functional (9) is at the point
Xmin = (1.4055, 1, 6.8605)Jmin = 3.6185.

Polynom fmin(q
−1) is

fmin

(
q−1

)
= 1− 1.3542q−1.4055+

4.4284 · 10−5q−2.4055 + 1.2662q−9.2928.
(18)

To optimize the objective function with the inte-
ger condition, the minimum is at the point Xint =
(2, 1, 9), J(Xint) = 3.7729. Polynom fint(q

−1) is

fint
(
q−1

)
= 1− 0.6260q−2

+0.8207q−3 + 1.3262q−9.
(19)

There is an additional error J(Xint) − J(Xmin) =
0.1544.



126 CYBERNETICS AND PHYSICS, VOL. 12, NO. 2, 2023

When rounding the resulting delays [Granichin, 2001]
to the nearest integers , the minimum point is Xround =
(2, 1, 7), J(Xround) = 9.4012. Polynom fround(q

−1) is

fround
(
q−1

)
= 1− 0.998820q−1

−2.9035q−2 + 4.4995q−9.
(20)

There is an additional error J(Xint) − J(Xmin) =
5.7827.

When using the following first order fractional delay
filters [Ivanov et al., 2022]:

C1

(
q−1

)
= 0.5945 + 0.4055q−1,

C2

(
q−1

)
= 0.5945 + 0.4055q−1,

C3

(
q−1

)
= 0.7340 + 0.2660q−1,

Polynom ffd(q
−1) is

ffd
(
q−1

)
= 1 + 0.05816q−1 − 0.8483q−2

−0.6056q−3 + 0.9448q−9 + 0.3424q−10.
(21)

There is an additional error

Jfd = 3.8786, Jfd − J(Xmin) = 0.2601

When using the approximation (14), the minimizing
norm of the matrix ∥∆A∥1, the following family of first-
order filters was obtained:

C1

(
q−1

)
= 0.4908 + 0.5284q−1,

C2

(
q−1

)
= 0.4908 + 0.5284q−1,

C3

(
q−1

)
= 0.6858 + 0.3208q−1,

Polynom fapprox(q
−1) is

fapprox(q
−1) = 1 + 0.0104q−1 + 0.7041q−2+

0.7460q−3 + 0.9112q−9 + 0.4260q−10.
(22)

There is an additional error Japprox =
3.7660, Japprox − J(Xmin) = 0.1475.

It follows from Theorem 2 that the use of a family of
second-order filters will make it possible to obtain a con-
troller implementation with zero additional error.

When using the approximation (14), the minimizing
norm of the matrix ∥∆A∥1, the following family of
second-order filters was obtained:

C1

(
q−1

)
= −0.0677 + 0.7110q−1 + 0.3590q−2,

C2

(
q−1

)
= −0.0677 + 0.7110q−1 + 0.3590q−2,

C2

(
q−1

)
= −0.0580 + 0.8357q−1 + 0.2240q−2,

Polynom fapprox 2

(
q−1

)
is

fapprox 2

(
q−1

)
= 0.6104− 3 · 10−6q−1

−0.4862q−2 + 1.6 · 10−5q−3

−0.0734q−8 + 1.0582q−9 + 0.2837q−10

(23)

4.3 Example 3. Flexible-link manipulator
The following transfer function is obtained by identifi-

cation of a flexible-link manipulator [Ho and Tu, 2005;
Merrikh-Bayat and Bayat, 2013]

G(s) =

∑6
i=1 bis

i + b0∑9
i=1 ais

i + a0
,

where the values of the parameters of the identified
model are given in Table 3.

Table 3. Parameters of the identified model in Example 3

i ai bi

9 1

8 1486.7

7 69317.7

6 1.616× 107 −14340.4953

5 1.062× 109 4.446× 106

4 6.167× 1010 5.697× 108

3 2.624× 1012 1.908× 1010

2 3.595× 1013 9.354× 1011

1 1.42× 1014 6.919× 1012

0 0 2.839× 1014

This system has three non-minimum phase zeros lo-
cated at z1 = 400.0282, z2 = 45.0015, and z3 =
19.9982.

The poles and zeros of the discrete transfer function
with sampling time Td = 0.003 are given in the Table 4.

The minimum of the functional is at the point Xmin =(
1 1.7396 14.6249

)
, J (Xmin) = 9.3265.

To optimize the objective function with the integer
condition, the minimum is at the point

Xint =
(
1 2 14

)
, J (Xint ) = 9.3826.

When rounding the resulting delays [Granichin, 2001] to
the nearest integers, the minimum point is

Xround =
(
1 3 13

)
, J (Xint ) = 9.4012

When using the following first order fractional delay
filters [Ivanov et al., 2022], Jfd(X) = 9.5630.

When using the approximation (14), the minimizing
norm of the matrix ∥∆A∥1, Japrox (X) = 9.4658.

It follows from Theorem 2 that the use of a family of
second-order filters will make it possible to obtain a con-
troller implementation with zero additional error.
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Table 4. Poles and zeros of transfer function in Example 3

Poles Zeros

1.0000 0.3011

3.3198 1.3909

0.8956 + 0.5001i 0.8737

0.8956− 0.5001i 0.9417

0.9939 + 0.1714i 1.0778

0.9939− 0.1714i 1.0618

1.1446

1.0366

1.021

5 Conclusion
The article proposes a controller implementation based

on a new fractional delay approximation. This makes it
possible to obtain zero additional error for many non-
integer solutions. It is also shown that with a non-zero
approximation error, the resulting controller may have
a lower level of error than the controller obtained using
integer optimization.

The implementation of a controller with an additional
error equal to zero has less computational complexity
than the implementation of a controller with a non-zero
additional error. This is explained by the fact that the op-
timization problem is reduced to solving the determined
system of equations.
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