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Abstract
Decreasing the natural frequency of a passive vibra-

tion isolator would improve its performance by extend-
ing the isolation frequency bandwidth. However, there
is trade-off between low natural frequency (low stiff-
ness) and large static displacement. This can be miti-
gated by employing a nonlinear spring with high-static-
low-dynamic-stiffness (HSLDS). In this paper a pas-
sive isolator with HSLDS is designed by exploiting the
negative stiffness of a composite bistable plate.

1 Introduction
The use of passive isolators is ubiquitous in engineer-

ing systems (Hartog, 1985; Rivin, 2001). In the sim-
plest case when the isolator is linear, a low natural fre-
quency, which is desirable, can only be achieved by
having a large static deflection, which is undesirable.
This disadvantage can be overcome by employing iso-
lation mounts with a nonlinear characteristic that pro-
vides a High-Static-Low-Dynamic-Stiffness (HSLDS)
resulting in a small static deflection, and a small stiff-
ness resulting in a low natural frequency and hence a
greater frequency range over which there is vibration
isolation (Rivin, 2001). There are a number of ways
to obtain this desirable nonlinear characteristic. Pla-
tus (Platus, 1999) exploited the buckling of beams un-
der axial load in a specific configuration to achieve a
negative stiffness in combination with a positive stiff-
ness, and hence low dynamic stiffness. Others have
achieved the same by connecting linear springs with
positive stiffness in parallel with mechanical elements
of negative stiffness (Alabuzhevet al., 1989; Carrella
et al., 2007) or using magnets as source of negative
stiffness (Carrellaet al., accepted for pubblication). In
this paper it is proposed to exploit the negative stiff-
ness exhibited by a square bistable composite plate in
order to achieve the desired HSLDS characteristic for
implementing an efficient passive vibration isolation
system. Most in general, bistable structures are those
which exhibit two stable equilibrium positions. Exam-
ples of bistable systems can be found in many fields.

For example the flight mechanism of the diptera can
be considered as a bistable mechanism, (Brennanet
al., 2003). Great interest has been recently focussed on
the employment of bistable structures for aeronautical
applications. Namely, these ‘morphing’ structures al-
low, for instance, in-flight change of the geometry of an
aircraft with consequent benefit in terms of versatility
and fuel consumption, (Mattioniet al., 2006b; Mattioni
et al., 2005). Further details on the design and manu-
facture of composite bistable structures can be found in
reference (Mattioniet al., 2006a).
The passive vibration isolator based on a bistable plate

is shown schematically in Fig. 1 in its loaded condi-
tion. The mass is placed in the centre (pointP ) of the
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Figure 1. Schematic representation of a passive isolation system

with a bistable plate and a mechanical spring. The dashed line indi-

cate the plate in its initial shape. The addition of the massm causes

the plate to become approximately horizontal (solid line)

bistable plate initially curved, which flattens under the
weight. At this point the plate does not exert any restor-
ing force and the weight is resisted only by the vertical
mechanical spring. The force displacement character-
istic of the plate can be computed with a commercial
FE software (in this case ABACUS) or experimentally
and then fitted with a cubic polynomial with negative
linear coefficient and a positive cubic term. This way
it is possible to determine the maximum negative stiff-
ness, which is required to occur at the static equilibrium
position. This defines the coefficient of the mechanical



spring that is required to make the total dynamic stiff-
ness (for oscillations about the static equilibrium posi-
tion) very small (theoretically zero).

2 A SDOF model for a bistable plate
In this section, a single-degree-of-freedom (SDOF)

model for a bistable plate is proposed. The main fo-
cus is on the snap-through mechanism that marks the
passage from one stable state to the other. Mattioniet
al. in reference (Mattioniet al., 2006a) have performed
the static analysis of a composite bistable plate. A static
load was applied in the centre of a rectangular plate
hinged at the corners and the reaction force was com-
puted. This reaction force is equivalent to the restoring
force of the plate and allows the plate stiffness to be
estimated. Arrietaet al. (Arrieta et al., 2007) applied
an harmonic force at the centre of a square plate and
measured its response. The test was an initial attempt
to study the dynamic of the structure but has shown
a rich and complex dynamic behaviour. In particular,
there seems to be a frequency, for a given amplitude of
the excitation force, at which the plate ’snaps’ from one
stable position to the other. These two observations im-
ply that, to a first approximation, the dynamics of the
snap-through mechanism may be modelled by a single
degree of freedom, namely the vertical displacement
(out of plane motion) at the excitation point.

2.1 Static analysis
A qualitative load-deflection curve of a bistable plate

obtained with a Finite Element Analysis (FEA) is
shown as the dashed line in Fig. 2. The curve corre-
sponds to a square plate with the corners pinned and a
quasi-static load applied in the centre. The force on the
y-axis is the reaction force of the plate measured at the
corners and the displacement on thex-axis is the rela-
tive displacement between the supports and the appli-
cation point of the force. The numerical load-deflection
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Figure 2. Load-deflection characteristic. The dashed line is ob-

tained with finite element analysis (FEA), the solid line is the plot

of the functionfp = −k1 x + k3 x3

characteristic can be approximated to a cubic polyno-

mial with negative linear coefficient and nonlinear cu-
bic term

fp(y) = −k1 y + k3 y3 (1)

where the coefficientsk1 and k3 can be determined
by ensuring the function (1) is symmetric and passes
through the peaks of the numerical curve. The ap-
proximate analytical restoring force of the plate is also
shown in Fig. 2 as the solid line. This function is a rea-
sonable approximation between the peaks in the force-
displacement curve, where the vibration isolation will
be operating. Other approaches to obtain the coeffi-
cients may be applied, such as a least squares fit over a
desired range of displacements.
As shown in (Carrellaet al., 2007; Alabuzhevet

al., 1989), a mechanical model of a system with a cu-
bic restoring force with a negative linear coefficient and
positive cubic term is equivalent to a system with two
oblique springs of equal coefficients,ko. This is shown
by the system in Fig. 3 with the vertical spring,kv,
omitted. The stiffness of the plate can be now derived
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Figure 3. Mechanical SDOF model of the isolation system witha

bistable plate, represented by two oblique springs of identical coeffi-

cientko, and a vertical mechanical springkv

from the restoring force as

kp(y) = −k1 + 3 k3 y2 (2)

A sketch of the non-linear plate stiffness is shown with
the dash-dot line in Fig. 4. There is a displacement
range with negative stiffness which has a minimum at
the zero displacement, which is the desired static equi-
librium position of the vibration isolator. The instabil-
ity due to the negative stiffness makes the bistable-plate
alone unsuitable for vibration isolation. The dashed
line in Fig.4 is the stiffness of a mechanical spring,
which is constant and positive,kv. This spring stiffness
can be chosen to be slightly greater than the minimum
stiffness of the plate,k1, so that the total stiffness, given
by their sum, is small and positive.

ktot = (kv − k1) + 3 k3 y2 (3)
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Figure 4. Qualitative plot of the stiffness as function of the dis-

placement for the bistable plate (dash-dot), the mechanical spring

(dashed) and the total stiffness of the isolator (solid)

In so doing the stiffness of the isolation mount is very
small in the vicinity of the static equilibrium position of
the isolator and increases as the displacement increases.
This is shown by the solid line in Fig. 4 The restoring
force of the isolation system is obtained by integrating
Eqn. (3) to give

ftot = (kv − k1) y + k3 y3 = k y + k3 y3 (4)

and is plotted in Fig. 5 The major benefit of having
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Figure 5. Load-deflection characteristic of the vibration isolator

with a bistable plate and a mechanical spring. For oscillations about

the static equilibrium position the stiffness is small and this results in

a low natural frequency

an isolation mount with the restoring force depicted
in Fig. 5 is that the for oscillations about the static
equilibrium position thelocal or dynamic stiffness is
small, and this ensures a very low natural frequency
(theoretically zero, ifkv = k1). It is known that a
vibration isolator with a low natural frequency has a
wider frequency isolation region, (Rivin, 2001; Car-
rella et al., 2007). It should be noted that, unlike a

standard linear isolator, the low natural frequency is not
associated with a high static displacement. In fact, at
the static equilibrium position the weight of the mass
is resisted only by the restoring force of the vertical
spring. Thus by designing the bistable plate and di-
mensioning the vertical spring, it is possible to design
a vibration isolator with a High-Static-Low-Dynamic-
Stiffness (HSLDS), (Carrellaet al., accepted for pub-
blication). With the spring force expressed by Eqn. (4)
and assuming a viscous dissipative mechanism, the
equation of motion for the isolation system with a har-
monic force acting on the mass can be written as

m ÿ + c ẏ + k y + k3 y3 = A cos(ω t) (5)

Eqn. (5) can be recognised as the equation of a harden-
ing Duffing oscillator which has been extensively stud-
ied in the literature (for example (Hayashi, 1964; Jor-
dan and Smith, 1999; Carrella, 2008))

3 Conclusions
Nonlinear vibration isolators with high-static-low-

dynamic-stiffness (HSLDS) characteristics offer a so-
lution to problem of having to choose between a low
natural frequency, desired for a wider frequency iso-
lation bandwidth, and the consequent high static dis-
placement that would result from using a linear softer
mount. In this paper a novel approach to obtain the nec-
essary negative stiffness has been proposed. A bistable
plate exhibits a snap-through mechanism which can be
exploited to achieve the required negative stiffness. A
mechanical spring with positive, constant coefficient is
then connected in parallel so that the system stiffness is
positive and small. This results in a hardening system
with a low natural frequency for oscillation about the
static equilibrium position. Finally, the dynamic of the
system can be studied by solving the nonlinear Duff-
ing equation. Future work will focus on the dynamic
model of the isolators and the measurements of the sys-
tem transmissibility in order to investigate the isolation
performance.
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