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Abstract 
The objective of the analysis is to obtain a 

closed form approximate analytical solution for the 
nonlinear differential equation of a loaded plate 
considering a time variant damping coefficient. The 
solution of the problem is obtained by using 
perturbation and a hybrid WKB-Galerkin method. 
Results are presented of comparison of the solutions 
based on different approaches. 
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1 Introduction 

Many physical phenomena involving oscillation 
cannot be represented in terms of linear theory. Thus 
non-linear theory potentially enables a description of 
phenomena which are otherwise hidden for the 
problem in the context of linear theory. 

A special branch of oscillation theory is devoted 
to non-linear oscillations with specific properties. Such 
kinds of motion can be observed in plates and shells 
with large displacements if the strains and 
displacement are non-linearly related. This class of 
problem is an integral part of non-linear deformable 
solid mechanics.  

As a rule, investigation in terms of non-linear 
theory results in nonlinear differential equations. 
Analytical solution of these equations, especially 
nonlinear differential equations with variable 
coefficients, as in this paper, causes many 
mathematical problems. Therefore, a wide variety of 
approximate methods such as perturbation techniques, 
the method of multiple scales and the averaging 
method, have been proposed for nonlinear differential 
equations in mechanics. However, it should be noticed 
that most nonlinear differential equations which are 

solved by applying such approximate methods are 
differential equations with constant coefficients.  

In this work a problem is presented of plate 
oscillation which is described by a more general 
nonlinear differential equation with variable 
coefficients. The perturbation technique and a hybrid 
(Wentzel-Kramer-Brillouin) WKB-Galerkin method 
are used to solve this problem.  

The hybrid WKB-Galerkin method enables 
especially good results to be obtained for approximate 
solution of a singular differential equation which 
contains a parameter multiplying the highest order 
derivative. According to the specific procedure, 
presented in [Gristchak, Dmitrieva, 1995; Gristchak, 
Ganilova, 2006], solution of the linear differential 
equations is conducted in two stages: initially by 
obtaining the WKB-solution of the problem and then 
by application of the Bubnov-Galerkin orthogonality 
procedure, taking asymptotic coefficients into 
consideration. However, typically, the algebra for the 
WKB method becomes more tedious as higher order 
terms are computed, and frequently the work required 
rises so fast from term to term that even with 
computational assistance very few terms can be 
computed. Thus for cases where higher order terms 
may have significant effect, it is important to get as 
much use of the information contained in the lower 
order terms as possible. The hybrid WKB-Galerkin 
method seems to extend greatly the power and 
usefulness of the WKB method [Steele, 1971; Steele, 
1989] without significant computational effort.  

Hybrid methods have proved to be useful in a 
wide variety of applications such as structural 
mechanics problems, applications to slender-bodies 
and thermal problems [Geer, Andersen, 1989; Geer, 
Andersen, 1990; Geer, Andersen, 1991; Gristchak, 
Dmitrieva, 1995; Gristchak, Ganilova, 2006]. 
Significantly, according to results obtained in different 
branches of mechanics the hybrid WKB-Galerkin 
method shows a higher accuracy of solution compared 
to the perturbation and WKB methods. 
 



 
2 Fundamentals and Solution of the Problem  

According to [Cartmell, 1990] there are two 
categories of non-linearities which can appear in real 
systems. The first one is based on careful 
mathematical modeling, when linearization is not 
applied. In this way large deflection problems are 
considered. The second category consists of non-
linearities which occur because of the description of 
specific physical phenomenon, such as nonlinear 
damping generated by material composition.  

According to the publication by [Volmir, 1972] 
in the class of plate oscillation problems of interest 
here the first category of non-linearities is of current 
importance.  In this case the natural oscillation of a 
simply supported plate  is described by the 
following equation: 

ba×

 
0)()()( 32

0
2 =++′′ τχτωτω fff          (1) 

 
It should be noticed that this equation has been 

considered and solved in a number of works with a use 
of perturbation method.  

However, the study conducted in [Nayfeh, 
1981] reveals the limitations of the perturbation 
method. These limitations are based on the presence of 
secular terms and absence of clear relations between 
the frequency and the power of the nonlinearity. As a 
result for such kind of nonlinear differential equations, 
typically of Duffing equation form, the Lindstedt-
Poincare technique, the method of multiple scales and 
the averaging method were all applied.  

In this paper we intend to extend the nonlinear 
equation which describes the plate oscillation under 
external dynamic loading q(t). Thus we consider a 
simply supported plated subjected to a dynamic 
loading q(t) and we also take into account a damping 
coefficient expressed as a time variant function )(tε . 
As a result of application of the Bubnov-Galerkin 
method according to [Volmir, 1972], it is possible to 
obtain the following equation [Nayfeh, 1981; Volmir, 
1972; Gristchak, Kabak, 1996]: 
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According to the procedure described in 

[Nayfeh, 1981] the problem can be 
nondimensionalized by introducing the following 
expressions: 
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We also define , where C is an 

integer constant. Thus 
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where K is a small term determined in [Volmir, 1972] 
and µ  is a positive constant given by [Nayfeh, 1981]. 

Therefore the equation of interest (2) can be 
written as follows 
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It should be noticed that investigation of a 

problem similar to (5) was conducted by applying the 
perturbation method in [Nayfeh, 1981] where a 
nonlinear differential equation with constant 
coefficients was obtained. 

For the solution of the nonlinear equation in (5) 
the perturbation method is applied, introducing 
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where α  is a small parameter.  
Substitution of (6) into (5) gives the following 

equation  
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By equating the terms of like powers it is 

possible to obtain the following system of 
nonhomogenous linear differential equations 
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Solution of these two differential equations can 

be obtained by applying a hybrid WKB-Galerkin 
method to the following general differential equation  
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The solution of this equation can be expressed 

as 
)()()( tftftf pc +=                   (10) 

 
where  is a complementary function and  
is a particular solution. 
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To find the complementary function we solve 
the following homogeneous differential equation with 
variable coefficients 

 



0)()()(2)(2 =+′+′′ tftfttf βελ            (11) 
 

where  is a parameter multiplying the highest order 
derivative. 

2λ

According to the hybrid method described in 
[Gristchak, Dmitrieva, 1995; Gristchak, Ganilova, 
2006], taking into consideration only the first two 
terms, the WKB-solution has the following form 
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Substituting (12) into equation (11) we obtain 
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Equating the coefficients of like powers, we get the 
system of equations 
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The alternative system (14) can be solved using the 
standard substitution 
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This leads to the requirement to solve the following 
equation 
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from which we obtain 
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Therefore, by considering (17), the solution of the 
system of equations (14) can be expressed as 
 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

±=

−=

∫∫
−

∫ )(

2/1

)(
2

0

01

)(
2

ln
2
1

t
dtt

dt

edt
t

eif

f
dt
df

ε
βε

β

ε

     (18) 

 
Thus, the solution based on the application of the 
WKB method can be defined by (12), taking into 
consideration (18). 

In the second step of the hybrid WKB-Galerkin 
method, the Bubnov-Galerkin technique was applied. 
Using only the first term of the WKB-solution ( ), 
we consider the solution in the form 

0f
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According to the hybrid approach, expression (19) can 
then be substituted into equation (11). 
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Following the necessary condition of orthogonality of 
R and the N+1 coordinate functions in the interval 
[a,b],i.e. 

, 

we obtain 
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where 00 fif ±=  
Equating the coefficients of the Real and 

Imaginary terms, we get the following system of 
equations 

 

⎪⎩

⎪
⎨
⎧

=+
=++−

02
0

020101

2
02

2
0102

δδδ
δδδ

BA
WBBA

         (22) 

 
where 
 

[ ]

∫

∫∫

±=

±=−′−=

b

a

b

a

b

a

dtfW

dtfBdtftffA

0

3
0

22
000

2 ;;)(2

β

λελ

(23) 

 
Solving the system of equations (22) we obtain 
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Therefore, the solution based on the hybrid 

WKB-Galerkin method can be expressed as (19) 
taking into consideration (18) and (24). 

It should be noticed that the hybrid solution 
obtained in the form of (19) is a complementary 
function of equation (9). To get the particular solution, 



applying the variation of parameters method, we 
suppose that 
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where C is an arbitrary constant. 
 Taking into consideration assumptions (18), 

(24) and (25), the hybrid solution (19) can be rewritten 
as 
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where  are arbitrary constants. 21, cc

Thus the particular solution of equation (9) can 
be obtained in the form 
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According to (10), the general solution of equation (9) 
can be expressed as 
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3 Numerical Results 

 To validate the solution obtained, it is 
important to present graphical results for the problem 
for predetermined parameters. It is assumed that a 
plate ( ) is simply supported and that the 
parameters described in (4) are given as the following 
data values  
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where  is thickness of the plate. It should be noted 

that the damping coefficient is assumed to be 

h

tt 1.0)( =ε  and also tt 2.0)( =ε .  

To illustrate graphically the behaviour of closed 
form solution (28) for the data used in (29), the 
MAPLE software was applied. 
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Figure 1. Behaviour of the  solution for different 
values of the time dependent damping coefficient. 
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To study the correlation of numerical solution 

of the described problem (5) and the solution obtained 
above, the Runge-Kutta method was applied. Results 
of the solution presented in (28) and the numerical 
solution are presented in the following Table.  
 

Table 1 
t Runge-Kutta 

method 
Solution 

obtained  )(ˆ tf
0.01 0.499925385359  510−⋅ 0.4982645218  510−⋅
0.02 0.0000199880691487 0.00001985571983 
0.03 0.0000449396481076 0.00004449469328 
0.04 0.0000798092173662 0.00007875901363 
0.05 0.0001245339054669 0.0001224922293 
0.1 0.0004925795616544 0.0004766441453 
0.2 0.0018832699432609 0.001763702803 
0.3 0.0039251810216846 0.003554273261 
0.4 0.0062519955355181 0.005460680060 
0.5 0.0084380954296054 0.007077298897 
1.5 -0.0077429716006232 -0.008593388163 
5.5 0.0077334293708881 0.006828513454 
10 0.0055302545933302 0.005622470552 

 
To corroborate the solution obtained above, the 

correlation of the solution of the same problem 
presented in [Nayfeh, 1981], but for constant damping 
coefficient, and solution (28) for the time variant 
damping coefficient is presented. It should be 
emphasized that the solution for the problem in 
[Nayfeh, 1981] (u(t)) is obtained by applying the 
perturbation method, as in this paper, but it is not valid 
for large values of time because of secular terms in the 
closed form solution. In contrast to the solution from 
[Nayfeh, 1981], the closed form solution obtained in 
this work does not consist of secular terms, and 
therefore can be applied for large values of time. 
However, for correlation of these two solutions in our 
numerical example we use only small values of the 



time parameter, in order to keep the solution presented 
in [Nayfeh, 1981] valid, and for a constant damping 
coefficient. Thus, according to [Nayfeh, 1981], we 
suppose  and 1=C 008281.0,0091.0)( === αεε t . 
All other parameters are as stated in (29).      

 
Figure 2. Correlation of solutions presented in 

[Nayfeh, 1981] u(t) and obtained in this work . )(ˆ tf
 

 It is obvious that the functions presented in 
Figure 2 almost completely coincide. To study the 
difference in the results the following Table is 
constructed. 

 
Table 2 

t Solution u(t),  
[Nayfeh, 1981] 

Solution 
obtained  )(ˆ tf

0.05 0.0001245216182 0.0001245200582 
0.1 0.0004926601094 0.0004926539960 

0.15 0.001088580582 0.001088567247 
0.2 0.001886750012 0.001886727300 

0.25 0.002852960166 0.002852926642 
0.3 0.003945697896 0.003945652973 
0.4 0.006318383566 0.006318317967 
0.5 0.008594850248 0.008594773688 
0.6 0.01037139786 0.01037132765 
0.7 0.01131477692 0.01131473610 
0.8 0.01121534388 0.01121535801 
0.9 0.01002077994 0.01002087309 
1 0.007845043508 0.007845234315 

 
 
4 Concluding Remarks 

Analyzing the results obtained for different 
values of the dynamic damping coefficient, presented 
in Figure 1, it is obvious that the damping of the 
oscillation occurs with an increasing damping 
coefficient.  

The solution obtained in this paper is compared 
with the numerical solution of the same problem, i.e. 
considering the time variant damping coefficient, and 
with the solution presented in [Nayfeh, 1981] for a 
time invariant damping coefficient, i.e. for 0091.0=ε . 

According to Table 1, Table 2 and Figure 2 it is 
obvious that the relative error is almost negligible for 
all cases. It should be noticed that the solution for the 
problem in [Nayfeh, 1981] obtained by applying a 
perturbation method, as in this paper, is not valid for 
large values of time because of secular terms in the 
solution function. In contrast to the [Nayfeh, 1981] 
solution, the closed form solution obtained in this 
work does not consist of secular terms and can be 
applied just as efficiently for large values of time. 

)(tu

The comparisons conducted confirm the 
effectiveness of the hybrid WKB-Galerkin method in 
this field, and the solution obtained for a more general 
extended problem of plate oscillation.  

)(ˆ tf

   
 
References 
Cartmell, M. (1990). Introduction to Linear, 

Parametric, and Nonlinear Vibrations. T.J.Press 
Ltd. Padstow, Cornwall. 

Geer, J. F., Andersen C. M. (1989). Hybrid 
Perturbation Galerkin Technique with Application 
to Slender Body Theory. SIAM J. Appl. Math., 49, 
pp. 344-361. 

Geer, J. F., Andersen, C. M. (1991). A Hybrid 
Perturbation-Galerkin Method for Differential 
Equations Containing a Parameter. Pan American 
Congress on Appl. Mech., pp. 460-463. 

Geer, J. F., Andersen, C. M. (1991). Improved 
Perturbation Solutions to Nonlinear Partial 
Differential Equations. Pan American Congress on 
Appl. Mech., pp. 567-570. 

Geer, J. F., Andersen, C. M. (1991). Natural 
Frequency Calculations Using A Hybrid 
Perturbation Galerkin Technique. Pan American 
Congress on Appl. Mech., pp. 571-574. 

Geer, J. F., Andersen, C. M. (1990). A Hybrid 
Perturbation Galerkin Technique with Combined 
Multiple Expansions. SIAM J. Appl. Math., 42, pp. 
105-112. 

Gristchak, V. Z., Dmitrieva, Ye. M. (1995). A Hybrid 
WKB-Galerkin Method and its Application. 
Technische Mechanik, 15, pp. 281-294. 

Gristchak, V. Z., Ganilova, O. A. (2006). Application 
of a Hybrid WKB-Galerkin Method in Control of 
the Dynamic Instability of a Piezolaminated 
Imperfect Column. Technische Mechanik, 26(2), pp. 
106-116.  

Gristchak, V. Z., Kabak, V. N. (1996). Double 
Asymptotic Method for Nonlinear Forced 
Oscillations Problem of Mechanical Systems with 
Time Dependent Parameters. Technische Mechanik, 
4, pp. 285-296.  

Nayfeh, A. H. (1981). Introduction to Perturbation 
Techniques. John Wiley & Sons, New York. (in 
Russian). 

Steele, C. R. (1989). Asymptotic Analysis and 
Computation for Shells. Analytical and 
Computational Models of Shells, 3, pp. 202-209. 

Steele, C. R. (1971). Beams and Shells with Moving 
Loads. Int. J. Solids Structures, 7, pp. 1171-1198. 

Volmir, A.S. (1972). Nonlinear Dynamics of Plates 
and Shells. Nauka, Moscow. (in Russian).  


