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Abstract: In this paper a well-known adjoint SISO Repetitive Control algorithm is 
extended to the multivariable case and its convergence properties are analysed. The new 
adjoint algorithm is validated using a simulation of an experimental facility consisting of 
a passive Naval vibration isolation mount that is combined with six active control 
channels located in a Stewart platform style arrangement. The algorithm utilises a 
multivariable FIR system description that is derived from frequency response function 
measurements. The adjoint repetitive control algorithm is used to eliminate a harmonic 
disturbance where the first harmonic coincides with the fundamental mount resonance of 
the passive component. The simulation results show that the repetitive control algorithm 
ultimately achieves good vibration isolation but due to the wide spread of system 
eigenvalues at the harmonic frequency, convergence is slow. Copyright © 2007 IFAC 
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1. INTRODUCTION 

 
Many signals in engineering are periodic, or at least 
they can be accurately approximated by a periodic 
signal over a large time interval. This is true, for 
example, of most signals associated with engines, 
electrical motors and generators, converters, or 
machines performing a task over and over again. 
Hence it is an important control problem to try to 
track a periodic signal with the output of the plant or 
try to reject a periodic disturbance acting on a control 
system. In order to solve this problem, the research 
area of Repetitive Control has emerged within the 
control community. The basic and defining 
philosophy in Repetitive Control is to utilise 
information obtained during previous periods to 
improve current performance through a process of 
learning. Since first proposed in Inouye, Nakano, 

Kubo, Matsumoto, and Baba (1981), an increasing 
number of diverse applications of RC have been 
reported in the literature during recent years. 
Examples include, robotics Kaneko and Horowitz 
(1997),motor control Kobayashi, Kimuara, and 
Yanabe (1999), rolling mills Garimella and 
Srinivasan (1996) and vibration control Hillerström 
(1996). 
 
This study concentrates on a well-known adjoint 
based Repetitive Control algorithm for SISO 
systems. Initially, as a new result, this paper extends 
the SISO algorithm first introduced in Chen and 
Longman (2002) and subsequently analysed in 
Hätönen, Freeman, Owens, Lewin, and Rogers 
(2004) to the multivariable (MIMO) case. As a main 
contribution, the stability properties of the MIMO 



 

     

algorithm are analysed and estimates for 
convergence speed in the multivariable setting are 
established.  
 
In the simulation part of the paper the algorithm is 
applied in the context of active control of vibration. 
To be more precise, the algorithm is implemented on 
an experimental Naval vibration isolation mount.  
This simulates problems within the marine 
environment where vibration propagation from 
propulsion and auxiliary machinery can cause both 
significant passenger and crew discomfort and also 
leads to the generation of acoustic noise from the 
hull. Such acoustic noise creates a severe detection 
hazard in Naval vessels and is also problematic for 
civil vessels such as those used by fisheries research 
organisations. It is shown that the adjoint based 
algorithm is capable of achieving good isolation 
following convergence. 
 
The rest of the paper is organized as follows: Section 
2 defines formally the Repetitive Control problem. 
This is followed by Section 3, which analyses the 
stability properties of the algorithm and provides 
estimates for convergence speed. In particular, it is 
shown that large singular value spread in the plant at 
disturbance frequencies can dramatically slow down 
the convergence speed. After this, Section 4 reports 
the simulation work on the Naval mount Finally, 
Section 5 concludes the paper and gives directions 
for future research. 
 
 

2. REPETITIVE CONTROL 
 
The starting point in Repetitive Control is a standard 
state-space representation 
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where rnn RuRx ∈∈ × , and sRy ∈ . Furthermore, 

ΓΦ, and C  are matrices of appropriate dimensions. 
From now on it is assumed that the sr = (i.e. the 
system is square) and that the system is both 
controllable and observable. Furthemore, without 
loss of generality, it is assumed that the system (1) is 
stable. Throughout, the notation 

ΓΦ−= −1)(:)( qICqG  is used to represent the transfer 
function matrix corresponding to (1). 
 
In repetitive control the design problem is to find a 
feedback controller that forces the system (1) to track 
a reference signal )(tr  or to reject a load disturbance 
signal )(td , and it is known that both signals are N -
periodic, )()( Ntrtr +=  and )()( Ntdtd += . 
Furthemore, it is easy to see that the load disturbance 
rejection problem is equivalent to the tracking 
problem, and therefore from now on only the 
tracking problem is considered. The inputs into the 
feedback controller at time point t  are previous 
inputs )(su for ts <  and tracking errors 

)()(:)( sysrse −=  for ts ≤ . As is shown in Francis 
and Wonham (1975), a necessary condition for 
asymptotic convergence to zero tracking error is that 
a controller  
 
[ ]( ) [ ]( )                                    (2)Mu t Ne t=  
 
where NM  and are suitable operators, must have an 
internal model of the reference signal inside the 
operator .M  Because the reference signal is assumed 
to be N -periodic, the internal model is simply 

Nq−−1 , where 1−q  is the standard delay operator, i.e. 
[ ]( ) ( )11 −=− tvtvq  for an arbitrary (possibly vector-
valued) time-sequence. The simplest algorithm that 
satisfies this condition is 
 

( ) ( ) [ ]( )                         (3)u t u t T Ne t= − +  
 
and if it is assumed that N  is causal LTI-filter, the 
algorithm can be written using the 1−q -operator 
formalism as 
 

( ) ( ) ( ) ( )                     (4)Nu t q u t K q e t−= +  
 
and the control design problem is to select ( )qK . In 
the SISO case ( )1== sr  Chen and Longman (2002) 
proposed the algorithm 
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parameters of the transfer function 
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1
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i
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i qICqgqG . The idea is 

therefore to use the first N  elements of the impulse 
response to implement causally the control law (5). 
Note that ( )1−qG  can be understood to be the adjoint 
system of ( )qG , see Lewis and Syrmos (1995) for 
details. 
 
In Hätönen et al. (2004) it has been shown that if the 
effect of truncation is modelled through 
multiplicative uncertainty ( ) ( ) ( )gGgUgG o= , and the 
phase of the multiplicative uncertainty lies between 

o90± , and β  is selected to be sufficiently small, the 
algorithm will drive the tracking error to zero 
asymptotically for any N -periodic 
reference/disturbance signal. The next section will 
generalise this algorithm to the multivariable case 
and analyse theoretically its convergence properties. 
 
 
 

3. ADJOINT BASED MULTIVARIABLE 
ALGORITHM 

 
This section introduces and analyses an adjoint type 
Repetitive Control algorithm for multivariable 
systems. The initial results were presented for the 



 

     

first time in the conference publication Hätönen, 
Daley, Zhang, and Owens (2005), and are extended 
here to include an analysis of convergence speed. 
 
3.1 Nominal convergence analysis 
 
Assume initially that the Markov parameters iG  of 

the transfer function matrix ( ) ∑∞

=
−=

0i
i

iqGgG  go to 

zero after N  steps. In this case the algorithm 
 

( ) ( ) ( ) ( ) (6)          1 teqqGtuqtu NTN −−− += β  
 
is causal, even though the algorithm contains a non-
causal element ( ) ∑∞

=
− =

0
1

i
iT

i
T

qGqG . Using (6) 

straightforward algebraic manipulations show that 
the tracking error satisfies the following autonomous 
system  
 

( ) ( ) ( )( ) ( ) (7)          1 teqGqGIqte N −− −= β  
 
This equation can used to establish the convergence 
of the algorithm under the FIR assumption on ( )qG : 
 
Proposition 1 Assume that the condition 
 

[ ]
( ) ( )( ) (8)          1sup *
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<−

=

ωω
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where σ  represents the largest singular value of 

( ) ( )*ωωβ jj eGeGI −  for a given ω . This implies that 
( ) 0lim =∞→ tet . 

 
Proof. Equation (7) can be written as 

( ) ( )( )( ) ( ) 01 =−− −− teqGqGIqI TN β , and due to the 
multivariable Nyquist stability theorem, stability is 
guaranteed if the characteristic loci of 

( ) ( )( )
ω

β
jez

TN zGzGIz
=

−−− 1  encircles the (-1,0) point 

as many times as there are unstable poles in 
( ) ( )( )TN qGqGIq 1−−− β .Because ( )qG  is assumed to 

be a FIR system, ( ) ( )( )TN qGqGIq 1−−− β  is a stable 
system, and therefore for stability it is required that 
the characteristic loci does not encircle the (−1,0) 
point. A sufficient condition for this is that 

[ ]
( ) ( )( )  1sup *

2,0
<−

=

ωω

πω
βσ jj eGeGI , which completes the 

proof. 
 
Note that condition in Proposition 1 can always be 
met, if ( )( )2

]2,0[sup/1 ω
πω σβ jeG∈< . In summary, if the 

algorithm satisfies the FIR assumption and β  is 
sufficiently small, the algorithm will drive the 
tracking error to zero in the limit. 
 
Remark 1 (Non-square systems) Note that if the 
plant has more outputs than inputs, a straightforward 
extension of the results in this section show that the 
algorithm converges to input 

( ) ( ) ( )( ) ( ) ( )trqGqGqGItu TT 1
1

1 −
−

−+= , which is the well-
known least squares solution. Also the robustness 
results in the following sections can easily be 
extended to this non-square case, but they omitted 
due to space limitations. 
 
3.2 Remarks on convergence speed 
 
Note that resulting error evolution equation (7) can 
be written in the frequency domain as 
 

( ) ( ) ( )( ) ( ) (9)           * ωωωωω β jNjjjj eeeeGeGiee −−=  
 
Assume now that the ratio between the largest and 
smallest eigenvalue maxλ  and minλ  at the 
fundamental frequency or one its harmonics is large, 
i.e. the condition number of the plant is large. In this 
case the learning gain has to made very small in 
comparison to the smallest eigenvalue minλ . Let v  
be the (complex) vector corresponding to smallest 
singular value, and re  the projection of ( )ojnee ω  on 

to v , i.e ( ) ( )oo jnjn
r ervee ωω *= . Along the vector 

v  the error evolution in the frequency domain at the 
frequency onω  can be approximated as 
 

( ) ( ) ( )( ) ( )
( ) ( ) ( ) (10)   
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β

−−

−

≈−=
−=  

which shows that ( ) ( ) ( )oooo jn
r

jnNjnjn
r eeeeeee ωωωω =≈ − , 

and therefore if the plant is ill-conditioned, hardly 
any ’learning’ takes place along the direction of the 
eigenvector associated with the smallest eigenvalue. 
In summary, when the plant is ill-conditioned at the 
fundamental frequency or the associated harmonics, 
it can be expected that the resulting convergence rate 
can be extremely slow . 
 
In order to come up with an estimate for the time 
constants of the algorithm, in this section a similar 
approximation technique is used as in Sievers and 
von Flotow (1992). As a starting point the the loop 
gain L(q) of the feedback system (7), which in this 
case is ( ) ( ) ( )TN

N qGqGq
q

qL 1

1
−−

−−
=

β , is expanded in 

the following way 
( ) ( )

( ) ( ) ( ) (11)         
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n
n
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jn qOReqReq
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where nR  are the residue matrices obtained from the 
equation 
 

( )( ) (12)            
ojneq

jn
n eqqLR ω

ω

=
−=  

and ( )qO  contains the poles of ( ) ( )TqGqG 1− , which 
are all the in the origin due to the FIR assumption. 
Note that in this expansion it is assumed that N  is 
an even number, and this will be also assumed for the 
rest of this section. A similar expansion can be done 



 

     

for an odd N , but these developments are omitted 
due to space limitations. 
 
A rather lengthy calculation then shows that a nR  

for 1≥n  is given by 
 

( ) ( ) (13)          
*

ooo jnjnjn
nn eGeGeR ωωωβγ−=  

 
where it can be proved that 
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for ππππω 2,2/3,2/,,0≠on . In the frequency band 
around ojneq ω=  the loop gain ( )qL  is dominated by 
the corresponding compensator pole, and therefore 
 

( ) ( ) ( ) (15)     11
n

jn
n

jn ReqReqqL oo
−−−

−+−≈ ωω  
 
if the plant model does not have strong resonances 
close to the frequencies onω . Furthermore, the 
locations of the closed loop system poles can be 
identified using a MIMO root locus argument - a 
starting point note that the closed-loop system is 
given by 
 

( ) ( )( )( ) ( ) (16)   01 =−− −− teqGqGIqI TN β  
 
and therefore the closed-poles iz  that lie on the root-

locus generated by β  satisfy the equation 
 

( ) ( )( )( ) (17)   11 −=−− −− T
ii

N
ii zGzGIz βλ  

 
where ( )( )ii zMλ  denotes the ith  eigenvalue of an 
arbitrary square complex matrix ( )izM . Simple 
algebraic manipulations show that this is equivalent 
to the condition 
 

( )( ) (18)          1=− ii zLλ  
 
Using the approximation (15) the ith  closed loop 
pole near ojne ω  can be determined by solving the 
following equation in terms of iz : 
 

( ) ( ) ( )( )( ) (19)   1*1
−=−−

−
oooo jnjnjn

n
jn

ii eGeGeez ωωωω βγλ  
which results in 
 

( ) ( )( )[ ] (20)       1 *
ooo jnjn

in
jn

i eGeGez ωωω λβγ+=  
 
This equation is very important, since it can be used 
a’priori to estimate the convergence speed of the 
algorithm. Note that (20) implies that 
 
1. A large eigenvalue spread of 

( ) ( )( )*
oo jnjn

i eGeG ωωλ  at a frequency onω  implies 
low converge rate, since in order to ‘stabilize’ 
the largest eigenvalue, a small β  is required (in 
relative terms), but at the same time small β  
leaves the pole associated with the smallest 
eigenvalue almost on the unit circle. This 
finding supports the approximate analysis in 
(10). 

2. nγ  term shows the rather complicated effect of 

the fundamental frequency oω , sampling time 

and cycle length N  on convergence rate for a 
fixed [ ] ( )( )2

2,0sup/1 ω
πω σβ jeG∈< . 

3. If a nominal plant ( )qGo  is used in algorithm 
implementation, and the true plant model is 
given by ( ) ( ) ( ) ( )tuqUqGty = , where ( )qU  
represents multiplicative uncertainty and is 
assumed to be a stable system, it is clear from 
(20) that a necessary condition for stability is 
that ( ) ( ) ( )( ) ( )( ) 0**

>+ oooo jnjnjnjn
i eGeUeUeG ωωωωλ , 

which is equivalent for ( ) ( )oo jnjn eUeU ωω +*  to be 
a positive definite matrix. It can in fact be 
rigorously shown that a sufficient condition for 
‘robust convergence’ is that ( ) ( )oo jj eUeU ωω +*  is 
a positive-definite matrix for all [ ]πω 2,0∈  and 
that β is sufficiently small. 

 
In Section 4, these points will be explored further in 
terms of simulation work and results. 
 
 
 

4. SIMULATION RESULTS 
 

The plant model used here is based on the facility 
(see Fig. 1) which was originally developed in 
association with BAE Systems Marine during the late 
1980’s. The main purpose of this mount is for testing 
active isolation schemes for large marine machinery 
rafts. The active mount consists of a central standard 
passive elastomeric Naval mount around which are 
located 6 Ling 30N electro-dynamic shakers. These 
apply forces in parallel to the passive mount and the 
‘stinger’ attachments are arranged in a hexapod or 
Stewart platform style such that control can be 
applied to all six degrees of freedom (three 
orthogonal translational forces and three orthogonal 
torques). 
 
Based on the algorithm in section 3, the simulation 
results use a model of the mount and convergence is 
shown in figure 2 with learning gain 5108 −×=β  and 
the disturbance signal is ( ) ( )ttd ××= 602sin π . From 
the plots it can be seen that the convergence speed of 
channel 2 is much faster than channel 5 and 6, even 
though the convergence rate of channel 2 does not 
satisfy the practical requirements. 
 



 

     

By checking the eigenvalues ))()(( *00 ωωλ jnjn
i eGeG  at 

the fundamental frequency 60=f , which are given 
in table 1, the expected convergence rate can be 
determined from (20). 

 
 

 
Fig. 1. Active mount 

 
 

1λ  607.455 

2λ  56.669 

3λ  3.351 

4λ  0.600 

5λ  0.004 

6λ  0.098 
Table 1. Eigenvalues at 60Hz 

 
 
 
From the table of eigenvalues it is clear that the 5th 
and 6th eigenvalues of the system at the specified 
frequency are much smaller than the 1st and 2nd 
ones. Therefore, if the first pole was located at the 
origin, i.e., 01 =z , then the value of β  would be 
required to be 2963.0=β . However, for this values 
the position of the fifth pole will be 

0.8090i + 0.5878z5 =  and 15 =z . This means when 
the value of β   is chosen to get the fast convergence 
for mode 1, it will lead to an impractically slow 
convergence in mode 5. It can readily be seen that in 
fact, for all values of stabilising β , there will be 
some modes with very slow convergence for this 
system. This explains the slow convergence rate 
demonstrated in all channels in Fig. 2. These 
convergence properties cannot be significantly 
improved without further conditioning of the plant. 
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Fig. 2. Simulation results 

 
 

5. CONCLUSIONS 
 

In this paper, a new adjoint based repetitive control 
law for multivariable systems has been proposed. 
The convergence and stability properties of the 
algorithm have been analysed together with some 
preliminary robustness results. The algorithm and 
convergence properties have been verified using an 
experimentally derived simulation model of a Naval 
vibration isolation mount. The simulation results 
show slow convergence properties because of the 
wide spread of the system eigenvalues at the 
fundamental frequency. Because of this problem, 
future work will concentrate on modifications to the 
algorithm to produce a fast convergence rate for each 
channel. 
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